The PML gene of acute promyelocytic leukemia (APL) encodes a cell-growth and tumor suppressor. PML localizes to discrete nuclear bodies (NBs) that are disrupted in APL cells. The Bloom syndrome gene BLM encodes a RecQ DNA helicase, whose absence from the cell results in genomic instability epitomized by high levels of sister-chromatid exchange (SCE) and cancer predisposition. We show here that BLM colocalizes with PML to the NB. In cells from persons with Bloom syndrome the localization of PML is unperturbed, whereas in APL cells carrying the PML-RARa oncoprotein, both PML and BLM are delocalized from the NB into microspeckled nuclear regions. Treatment with retinoic acid (RA) induces the relocalization of both proteins to the NB. In primary PML7/7 cells, BLM fails to accumulate in the NB. Strikingly, in PML7/7 cells the frequency of SCEs is increased relative to PML+/+ cells. These data demonstrate that BLM is a constituent of the NB and that PML is required for its accumulation in these nuclear domains and for the normal function of BLM. Thus, our ®ndings suggest a role for BLM in APL pathogenesis and implicate the PML NB in the maintenance of genomic stability.
DNA helicases are a highly conserved group of enzymes that unwind DNA. They function in all processes in which access to single-stranded DNA is required, including DNA replication, DNA repair and recombination, and transcription of RNA. Defects in helicases functioning in one or more of these processes can result in characteristic human genetic disorders in which genomic instability and predisposition to cancer are common features. So far, different helicase genes have been found mutated in six such disorders. Mutations in XPB and XPD can result in xeroderma pigmentosum, Cockayne syndrome, or trichothiodystrophy. Mutations in the RecQ-like genes BLM, WRN, and RECQL4 can result in Bloom syndrome, Werner syndrome, and Rothmund-Thomson syndrome, respectively. Because XPB and XPD function in both nucleotide excision repair and transcription initiation, the cellular phenotypes associated with a deficiency of each one of them include failure to repair mutagenic DNA lesions and defects in the recovery of RNA transcription after UV irradiation. The functions of the RecQ-like genes are unknown; however, a growing body of evidence points to a function in restarting DNA replication after the replication fork has become stalled. The genomic instability associated with mutations in the RecQ-like genes includes spontaneous chromosome instability and elevated mutation rates. Mouse models for nearly all of these entities have been developed, and these should help explain the widely different clinical features that are associated with helicase mutations.
Subscribe to PCMR and stay up-to-date with the only journal committed to publishing basic research in melanoma and pigment cell biology As a member of the IFPCS or the SMR you automatically get online access to PCMR. Sign up as a member today at www.ifpcs.org or at www.societymelanomaresarch.org
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.