Polydopamine (PDA) formed by the oxidation of dopamine is an important polymer, in particular, for coating various surfaces. It is composed of dihydroxyindole, indoledione, and dopamine units, which are assumed to be covalently linked. Although PDA has been applied in a manifold way, its structure is still under discussion. Similarities have been observed in melanins/eumelanins as naturally occurring, deeply colored polymer pigments derived from L-DOPA. Recently, an alternative structure was proposed for PDA wherein dihydroxyindoline, indolinedione, and eventually dopamine units are not covalently linked to each other but are held together by hydrogen bonding between oxygen atoms or π stacking. In this study, we show that this structural proposal is very unlikely to occur taking into account unambiguous results obtained by different analytical methods, among them (13)C CPPI MAS NMR (cross-polarization polarization-inversion magic angle spinning NMR), (1)H MAS NMR (magic angle spinning NMR), and ES-HRMS (electrospray ionization high-resolution mass spectrometry) for the first time in addition to XPS (X-ray photoelectron spectroscopy) and FTIR spectroscopy. The results give rise to a verified structural assignment of PDA wherein dihydroxyindole and indoledione units with different degrees of (un)saturation are covalently linked by C-C bonds between their benzene rings. Furthermore, proof of open-chain (dopamine) monomer units in PDA is provided. Advanced DFT calculations imply the arrangements of several PDA chains preferably by quinone-hydroquinone-type interactions in a parallel or antiparallel manner. From all of these results, a number of hypotheses published before could be experimentally supported or were found to be contradictory, thus leading to a better understanding of the PDA structure.
Corresponding authorsM. Szekeres (szekeres@chem.u-szeged.hu) and E. Tombácz (tombacz@chem.u-szeged.hu)
Graphical abstract AbstractMagnetite nanoparticles (MNPs) with biocompatible coatings are good candidates for MRI (magnetic resonance imaging) contrasting, magnetic hyperthermia treatments and drug delivery systems. The spontaneous surface induced polymerization of dissolved organic matter on environmental mineral particles inspired us to prepare carboxylated core-shell MNPs by using a ubiquitous polyphenolic precursor. Through the adsorption and in-situ surface polymerization of gallic acid (GA), a polygallate (PGA) coating is formed on the nanoparticles (PGA@MNP) with possible antioxidant capacity. The
Polygallate on magnetite nanoparticles Humic matter on clays 2This is a PDF file of an unedited manuscript that has been accepted for publication. Final edited form is published in Langmuir, 2014, 30:15451−15461. http://dx.doi.org/10.1021/la5038102 present work explores the mechanism of polymerization with the help of potentiometric acid-base titration, dynamic light scattering (for particle size and zeta potential determination), UV-Vis (UVvisible light spectroscopy), FTIR-ATR (Fourier-transformed infrared spectroscopy by attenuated total reflection) and XPS (X-ray photoelectron spectroscopy) techniques. We observed the formation of ester and ether linkages between gallate monomers both in solution and in the adsorbed state. Higher polymers were formed in the course of several weeks both on the surface of nanoparticles and in the dispersion medium. The ratio of the absorbances of PGA supernatants at 400 and 600 nm (i.e., the E4/E6 ratio commonly used to characterize the degree of polymerization of humic materials) was determined to be 4.3, similar to that of humic acids. Combined XPS, dynamic light scattering and FTIR-ATR results revealed that prior to polymerization, the GA monomers became oxidized to polycarboxylic acids due to ring opening while Fe 3+ ions reduced to Fe 2+ . Our published results on the colloidal and chemical stability of PGA@MNPs are referenced thoroughly in the present work. Detailed studies on biocompatibility, antioxidant property and biomedical applicability of the particles will be published.
Iron oxide nanoparticles are the basic components of the most promising magneto-responsive systems for nanomedicine, ranging from drug delivery and imaging to hyperthermia cancer treatment, as well as to rapid point-of-care diagnostic systems with magnetic nanoparticles. Advanced synthesis procedures of single- and multi-core iron-oxide nanoparticles with high magnetic moment and well-defined size and shape, being designed to simultaneously fulfill multiple biomedical functionalities, have been thoroughly evaluated. The review summarizes recent results in manufacturing novel magnetic nanoparticle systems, as well as the use of proper characterization methods that are relevant to the magneto-responsive nature, size range, surface chemistry, structuring behavior, and exploitation conditions of magnetic nanosystems. These refer to particle size, size distribution and aggregation characteristics, zeta potential/surface charge, surface coating, functionalization and catalytic activity, morphology (shape, surface area, surface topology, crystallinity), solubility and stability (e.g., solubility in biological fluids, stability on storage), as well as to DC and AC magnetic properties, particle agglomerates formation, and flow behavior under applied magnetic field (magnetorheology).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.