Stiction is a major failure in microelectromechanical system (MEMS) devices in which two contacting surfaces can remain stuck together because of the adhesive forces. Due to the difference between the surfaces roughness and the adhesive force range, the real contact areas are usually smaller than the apparent one, resulting in a scatter in the adhesive forces. Consequently, the stiction is an uncertain phenomenon. In this work, we develop a probabilistic model to predict the uncertainties of stiction due to the capillary forces acting on stiff materials. This model contains two levels: at the deterministic level, the model can predict the pull-out adhesive contact forces for a given surface topology; at the probabilistic level, the model generates independent identically distributed surfaces on which the deterministic solution can be applied to evaluate the uncertainties related to the stiction phenomenon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.