Abstract-With Canadian security and the safety of the general public in mind, physicists at Health Canada (HC) have begun to develop techniques to identify persons concealing radioactive material that may represent a threat to attendees at public gatherings, such as political proceedings and sporting events. To this end, Health Canada has initiated field trials that include the deployment of gamma-ray spectrometers. In particular, a series of these detectors, which take measurements every minute and produce 1,024 channel gamma-ray spectrum, were deployed during the Vancouver 2010 olympics. Simple computerized statistics and human expertise were used as the primary line of defence. More specifically, if a measured spectrum deviated significantly from the background, an internal alarm was sounded and an HC physicist undertook further analysis into the nature of the alarming spectrum. This strategy, however, lead to a significant number of costly and time consuming false positives. This research applies sophisticated machine learning algorithms to reduce the number of false positives to an acceptable level, the results of which are detailed in this paper. In addition, we emphasize the primary findings of our work and highlight avenues available to further improve upon our current results.
In 2012, Defence Research and Development Canada led a series of experiments, titled the Full-Scale Radiological Dispersal Device Field Trials, in which short-lived radioactive material was explosively dispersed and the resulting plume and deposition were characterized through a variety of methods. Presented here are the results of a number of measurements that were taken to characterize the radioactive ground deposition. These included in situ gamma measurements, deposition filter samples, and witness plate measurements that were taken in situ with handheld beta survey meters. The results from the different measurement techniques are compared to each other and to a simple deposition model. Results showed that approximately 3% of the original source activity was deposited in the immediate vicinity of ground zero, and an additional 15-30% of the original activity was deposited within 450 m of ground zero. Implications of these results for emergency response are discussed.
The Comprehensive Nuclear-Test-Ban Treaty (CTBT) bans the testing of nuclear explosive devices underground, in the atmosphere and underwater. Two main technologies, radionuclide and seismo-acoustic monitoring, are deployed in the International Monitoring System used for the verification of the CTBT. Medical isotope production from fission-based processes is the dominant contributor to a worldwide background of radioxenon. This background can make the discrimination of nuclear tests from legitimate nuclear activities very challenging. Even if emissions from medical isotope producers experienced a large reduction, there remain other important sources of radioxenon that contribute to the global background such as research reactors and nuclear power plants. Until recently, the largest producer of medical isotopes was located in Canada, at the Canadian Nuclear Laboratories (CNL) facility. The characterization of CNL emissions and its research reactor can provide valuable information for effective verification of the CTBT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.