SummaryProtein secretion in filamentous fungi has been shown to be restricted to actively growing hyphal tips. To determine whether an increase in the amount of growing surface area of a fungus can lead to an increase in the amount of protein secretion, we examined secretion in a temperature-sensitive Neurospora crassa mcb mutant that shows a loss of growth polarity when incubated at restrictive temperature. Incubation of the mcb mutant at restrictive temperature results in a three-to fivefold increase in the level of extracellular protein and a 20-fold increase in carboxymethyl cellulase activity relative to a wild-type strain. A mutation in the cr-1 gene has been shown previously to suppress the apolar growth phenotype of the mcb mutant, and we find that the level of extracellular protein produced by a mcb;cr-1 double mutant was reduced to that of the wild-type control. Immunolocalization of a secreted endoglucanase revealed that proteins are secreted mainly at hyphal tips in hyphae exhibiting polar growth and over the entire surface area of bulbous regions of hyphae that are produced after a shift of the mcb mutant to restrictive temperature. These results support the hypothesis that secretion of extracellular protein by a filamentous fungus can be significantly increased by mutations that alter growth polarity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.