The long-range goal of the Z-Pinch IFE program is to produce an economically-attractive power plant using
Due to increasing concerns over the buildup of long-lived transuranic isotopes in spent nuclear fuel waste, attention has been given in recent years to technologies that can burn up these species. The separation and transmutation of transuranics is part of a solution to decreasing the volume and heat load of nuclear waste significantly to increase the repository capacity. A fusion neutron source can be used for transmutation as an alternative to fast reactor systems. Sandia National Laboratories is investigating the use of a Z-Pinch fusion driver for this application. This report summarizes the initial design and engineering issues of this "In-Zinerator" concept. Relatively modest fusion requirements on the order of 20 MW can be used to drive a sub-critical, actinide-bearing, fluid blanket. The fluid fuel eliminates the need for expensive fuel fabrication and allows for continuous refueling and removal of fission products. This reactor has the capability of burning up 1,280 kg of actinides per year while at the same time producing 3,000 MW th . The report discusses the baseline design, engineering issues, modeling results, safety issues, and fuel cycle impact.4
The uptake and accumulation of metals occurs in the kidney, which is a key site for interaction between metal nephrotoxicants. The uptake/accumulation and interaction of CdCI2, HgCI2, K2Cr207, and NaAsO2 was examined in precision-cut rabbit renal cortical slices. Slices were incubated with 106 to 10-M of a single metal toxicant or combinations of metal toxicants for 12 hr in DME-F12 media. Slices were blotted and sandwiched between two mylar films stretched across XRF sample cups. Quantitation of the metal in the slices was performed by proton-induced X-ray emission analysis (PIXE). The uptake of the metals was rapid, often reaching a maximum between 3 to 6 hr; the accumulation of Hg was highest, followed in order by Cd, Cr, and As. When two metals were present together, substantial alterations were observed in the uptake of the metals in the slices. HgCI2 hindered the uptake of K2Cr207, NaAsO2, CdCI2 (in this order), whereas these metals facilitated the uptake of HgCI2. However, a decreased uptake of both metals was often noted after exposure to other combinations of metals. PIXE analysis of metal content in slices is attractive since all elements (atomic number >20) can be determined simultaneously. This information will be particularly useful in studying potential toxic interactions. -Environ Health Perspect 103(Suppl 1): 77-80 (1995)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.