Rising costs of production and the need for capital investment in the public water supply network in Ireland, has placed a strong emphasis on the need for water conservation and tackling the current high levels of leakage (Department of the Environment, Community and Local Government, 2015) [1]. Consequently, Irish Water which is Ireland's national water utility has had to consider various business models and supply frameworks to demonstrate value for money. This has included those successfully implemented by Scottish Water. Therefore, the aim of this study was to compare both national utility providers in terms of structure and financial performance. The results of this study showed that both utility providers differed significantly. The Utility has, indeed, tried to achieve "too much too soon" (O'Leary, 2018 [2]; Donegal Now, 2016) [3]. Therefore, the initial results of this study suggest that, continuing to consider Scottish Water as the benchmark may generate unrealistic targets and expectations which in all probability may not be achieved.
Sewer blockages are on the increase whilst water closet (WC) flush volumes are on the decrease. Furthermore, Water UK reported figures show that the actual number of properties affected by sewer flooding is on the rise. Sewer blockages can lead to sewer flooding of homes and collapse of sewers which impact negatively on social, economic and environmental factors, and therefore, they are not sustainable. Water conservation is required due to water stress but reduced water use results in less water to waste, which in turn reduces solids' transfer in sewers. When considering reducing water usage through water conservation, these savings could be cancelled out by an increased population and the situation exacerbated by the impacts of climate change. There are issues in relation to varying design methods, a reliance on engineering judgement in sewer design, uncertainty relating to future water stress, and a lack of cross disciplinary design decision-making. Public health engineering solutions are needed to reduce the number of sewer blockages and the environmental impact of sewer flooding. This paper examines the fundamental research that have been carried out in the area of "solid transfer in sewers" resulting from "less water to waste" since the mid-20th Century. Contrary to existing literature, this paper identifies that, now more than ever, this type of research is needed to deal with the increased need for water conservation. To judge that solid transfer research is complete can be compared to supporting a statement that "water conservation is complete".
This study aimed to explore the disinfection of drinking water in trunk water mains, based on published conditions denoted within the Irish Republic. The variables within the study were consumer draw-off rates, trunk main length, pipe diameter, and water temperature. All these factors are known to impact the free chlorine residual in operational supply networks. Based on published conditions obtained within the literature review, 60 hypothetical trunk mains were generated for this study. Of primary concern were the variables that affect the chlorine decay rate; total amount of chlorine decay; available amount of chlorine in the periphery of the trunk main; and the costs associated with effective chlorine disinfection of trunk mains. Based on the analysis performed, the following were the salient observations: 1) Low consumer draw-off rates and increased trunk main length and diameter increased the risk of the free chlorine residual in the periphery of the trunk mains not complying with the Environmental Protection Agency's (EPA) minimum recommended residual value of 0.1 mg/l (EPA Drinking Water Audit Report, 2014). 2) Increasing the diameter of the trunk main from 125 mm to 180 mm had a negligible effect on the chlorine decay rate. However, increasing the trunk main diameter from 125 mm to 180 mm was shown to have a major impact on the total amount of chlorine decay and free chlorine residual available in the periphery of the main. The key parameters that affected disinfection costs associated with trunk mains include length, diameter and the need for chlorine boosting.
Climate change and population growth have influenced social and physical water scarcity in many regions. Accordingly, the future performance of water storage reservoirs, as one of the fundamental elements in the water resource management, are anticipated to be affected by climate change. This study reports on a framework that can model Reliability-Resiliency-Vulnerability (RRV) measures of water reservoirs in the context of climate change. The framework first develops a hydrological model of a reservoir system using its historical data. The model is then optimised to minimise the water deficit and flooding around the catchment area of the reservoir. The resulting optimal policies are simulated back to the model considering the GCMs. Finally, RRV indices are calculated. RRV indices are effective measures for defining the performance of reservoir systems. Reliability is defined as the probability of the failure of the system, Resiliency is defined as the time needed for the system to go back to its satisfactory state once it entered the failure state, and Vulnerability is defined as the “magnitude of the failure” of a system. The proposed framework has been applied to a reservoir system located in the south-west of Iran on the Dez river. The results show climate change may increase the reliability and resiliency of the system under study while increasing its vulnerability. Therefore, the output of this framework can also provide supplementary information to authorities and decision-makers to inform future water management and planning policies.
Climate change is regarded as the greatest threat to society in the coming years, and directly affects the water industry; with changes in temperature, rainfall intensities and sea levels resulting in increased treatment and subsequent energy costs. As one of the largest global consumers of energy, the water industry has the opportunity to significantly prevent climate change by reducing energy usage and subsequent carbon footprints. Wastewater treatment alone requires an estimated 1%-3% of a country overall energy output while producing 1.6% of its global greenhouse gas emissions; over 75% of which can be due to the collection system. Gravity flows should therefore be incorporated where possible, reducing pumping requirements and therefore minimizing costs and subsequent carbon footprints. This study has assessed the operational energy usage of the alternative collection systems low pressure and vacuum, for use in situations in which a conventional gravity system is not practicable. This was carried out through hypothetical scenario testing using design parameters derived from literature, generating 60 hypothetical collection mains with variations in population, static head and main length. From this study, it was found that the energy demand of a low pressure system is 3.2-4.2 times greater than that of its equivalent vacuum system in the same scenario. Energy demand for both systems increases with population, static head and main length. However, population and therefore flow changes were found to have the greatest effect on the energy usage of both systems. Therefore, flow reduction measures should be adopted if the decarbonization of the water industry is to be achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.