The Cyanobacteria Prochlorococcus and Synechococcus account for a substantial fraction of marine primary production. Here, we present quantitative niche models for these lineages that assess present and future global abundances and distributions. These niche models are the result of neural network, nonparametric, and parametric analyses, and they rely on >35,000 discrete observations from all major ocean regions. The models assess cell abundance based on temperature and photosynthetically active radiation, but the individual responses to these environmental variables differ for each lineage. The models estimate global biogeographic patterns and seasonal variability of cell abundance, with maxima in the warm oligotrophic gyres of the Indian and the western Pacific Oceans and minima at higher latitudes. The annual mean global abundances of Prochlorococcus and Synechococcus are 2.9 ± 0.1 × 10 27 and 7.0 ± 0.3 × 10 26 cells, respectively. Using projections of sea surface temperature as a result of increased concentration of greenhouse gases at the end of the 21st century, our niche models projected increases in cell numbers of 29% and 14% for Prochlorococcus and Synechococcus, respectively. The changes are geographically uneven but include an increase in area. Thus, our global niche models suggest that oceanic microbial communities will experience complex changes as a result of projected future climate conditions. Because of the high abundances and contributions to primary production of Prochlorococcus and Synechococcus, these changes may have large impacts on ocean ecosystems and biogeochemical cycles.climate change | marine biogeochemistry | microbial biogeography M arine phytoplankton contribute roughly one-half of the global net primary production and play a key role in regulating global biogeochemical cycles (1). Marine phytoplankton are very diverse (2), including phylogenetic, biochemical, metabolic, and ecological variability (3-6). Thus, understanding the contribution of different phytoplankton groups to ecosystem functioning is central to predicting the biogeochemical impact of future environmental changes (7). However, our limited quantitative understanding of the global distribution and abundance of most phytoplankton groups constrains our ability to incorporate phytoplankton diversity into ocean biogeochemical models.The marine Cyanobacteria Prochlorococcus and Synechococcus are abundant in many ocean regions. The known geographical distributions of the two lineages are based primarily on individual cruises or time series observations and secondarily on macroecological descriptions, indicating central tendencies and boundary constraints related to light, temperature, nutrients, and chlorophyll a concentration (8-10). Prochlorococcus is present from the surface to a depth of ∼150 m in the open ocean between 40°N and 40°S. The population size declines beyond these latitudinal limits, and Prochlorococcus is thought to be absent at temperatures below 15°C (11). Furthermore, the lineage is believed to be out...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.