We use matched asymptotics to derive analytical formulae for the acoustic impedance of a subwavelength orifice consisting of a cylindrical perforation in a rigid plate. In the inviscid case, an end correction to the length of the orifice due to Rayleigh is shown to constitute an exponentially accurate approximation in the limit where the aspect ratio of the orifice is large; in the opposite limit, we derive an algebraically accurate correction, depending upon the logarithm of the aspect ratio, to the impedance of a circular aperture in a zero-thickness screen. Viscous effects are considered in the limit of thin Stokes boundary layers, where a boundary layer analysis in conjunction with a reciprocity argument provides the perturbation to the impedance as a quadrature of the basic inviscid flow. We show that for large aspect ratios the latter perturbation can be captured with exponential accuracy by introducing a second end correction whose value is calculated to be in between two guesses commonly used in the literature; we also derive an algebraically accurate approximation in the small-aspect-ratio limit. The viscous theory reveals that the resistance exhibits a minimum as a function of aspect ratio, with the orifice radius held fixed. It is evident that the resistance grows in the long-aspect-ratio limit; in the opposite limit, resistance is amplified owing to the large velocities close to the sharp edge of the orifice. The latter amplification arrests only when the the plate is as thin as the Stokes boundary layer. The analytical approximations derived in this paper could be used to improve circuit modelling of resonating acoustic devices.
We study the problem of resonant extraordinary transmission of electromagnetic and acoustic waves through subwavelength slits in an infinite plate, whose thickness is close to a half-multiple of the wavelength. We build on the matched-asymptotics analysis of Holley & Schnitzer (2019
Wave Motion
91
, 102381 (doi:10.1016/j.wavemoti.2019.102381)), who considered a single-slit system assuming an idealized formulation where dissipation is neglected and the electromagnetic and acoustic problems are analogous. We here extend that theory to include thin dissipative boundary layers associated with finite conductivity of the plate in the electromagnetic problem and viscous and thermal effects in the acoustic problem, considering both single-slit and slit-array configurations. By considering a distinguished boundary-layer scaling where dissipative and diffractive effects are comparable, we develop accurate analytical approximations that are generally valid near resonance; the electromagnetic–acoustic analogy is preserved up to a single parameter that is provided explicitly for both scenarios. The theory is shown to be in excellent agreement with GHz-microwave and kHz-acoustic experiments in the literature.
We study the acoustic response of flat-menisci bubbles trapped in the grooves of a microstructured hydrophobic substrate immersed in water. In the first part of the paper we consider a single bubble subjected to a normally incident plane wave. We use the method of matched asymptotic expansions, based on the smallness of the gas-to-liquid density ratio, to describe the near-field of the groove, where the compressibility of the liquid can be neglected, and an acoustic region, on the scale of the wavelength, which is much larger than the groove opening in the resonance regime of interest. We find that bubbles trapped in grooves support multiple subwavelength resonances, which are damped -radiatively -even in the absence of dissipation. Beyond the fundamental resonance, at which the pinned meniscus is approximately parabolic, we find a sequence of higher-order anti-resonance and resonance pairs; at the anti-resonances (whose frequencies are independent of the gas properties and groove size) the gas is idle and the scattering vanishes, while
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.