Abstract-A time series is a sequence of observations collected over fixed sampling intervals. Several real-world dynamic processes can be modeled as a time series, such as stock price movements, exchange rates, temperatures, among others. As a special kind of data stream, a time series may present concept drift, which affects negatively time series analysis and forecasting. Explicit drift detection methods based on monitoring the time series features may provide a better understanding of how concepts evolve over time than methods based on monitoring the forecasting error of a base predictor. In this paper, we propose an online explicit drift detection method that identifies concept drifts in time series by monitoring time series features, called Feature Extraction for Explicit Concept Drift Detection (FEDD). Computational experiments showed that FEDD performed better than error-based approaches in several linear and nonlinear artificial time series with abrupt and gradual concept drifts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.