For AuthorsIf you would like to write for this, or any other Emerald publication, then please use our Emerald for Authors service information about how to choose which publication to write for and submission guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information. About Emerald www.emeraldinsight.comEmerald is a global publisher linking research and practice to the benefit of society. The company manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as well as providing an extensive range of online products and additional customer resources and services.Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for digital archive preservation.*Related content and download information correct at time of download. Purpose -The purpose of this paper is to describe a proposal for a data-driven investigation aimed at determining whether students' learning behavior can be extracted and visualized from action logs recorded by Moodle. The paper also tried to show whether there is a correlation between the activity level of students in online environments and their academic performance with respect to final grade. Design/methodology/approach -The analysis was carried out using log data obtained from various courses dispensed in a university using a Moodle platform. The study also collected demographic profiles of students and compared them with their activity level in order to analyze how these attributes affect students' level of activity in the online environment.Findings -This work has shown that data mining algorithm like vector space model can be used to aggregate the action logs of students and quantify it into a single numeric value that can be used to generate visualizations of students' level of activity. The current investigation indicates that there is a lot of variability in terms of the correlation between these two variables.Practical implications -The value presented in the study can help instructors monitor course progression and enable them to rapidly identify which students are not performing well and adjust their pedagogical strategies accordingly. Originality/value -A plan to continue the work by developing a complete dashboard style interface that instructors can use is already underway. More data need to be collected and more advanced processing tools are necessary in order to obtain a better perspective on this issue.
Purpose -This paper proposes a novel approach for processing course log data obtained from Moodle-based blended courses in order to visualize patterns of student activity within the online environment and to determine whether these log data can be used to predict student academic performance.Method -Logs of student activities were summarized and processed using the Vector Space Model approach. This resulted in a novel vector-based form of representation which can be used to map students' activity in a latent activity space given a set of activity dimensions. An enriched form of this representation was also generated by processing the DateTime and IP address metadata for the purpose of developing classification/predictive model of students' performance. 2Results -The activity space coupled with a one-hot vector representation for each unique activity dimension can be used to visualize the differences in level and type of activity preferences of students. Experiments using several machine learning algorithms indicate that the generated model can modestly distinguish between sets of activities that lead to High, Low, or Failed performances.Conclusion -The development of easily interpretable graphics that can depict trends in student activity is a useful tool for instructors handling blended courses. It can provide constant monitoring of course progression with minimal effort and enable instructors to determine whether and how the environment actually affects student performance.Recommendations -Further work on refining the process applied to the data is recommended. The log data should be time-sliced and processed to determine whether and how the student's level and type of activity changes over time. More powerful machine learning classification techniques shouldalso be tested to determine whether it can improve the classification accuracy.Research Implications -These types of visualizations and predictive models could be used to monitor the student or class which requires immediate and specific pedagogical adjustments.
Nowadays, social media networks generate a tremendous amount of social information from their users. To understand people’s views and sentimental tendencies on a commodity or an event timely, it is necessary to conduct text sentiment analysis on the views expressed by users. For the microblog comment data, it is always mixed with long and short texts, which is relatively complex. Especially for long text data, it contains a lot of content, and the correlation between words is more complex than that in short text. To study the sentiment classification of these mixed texts composed of long-text and short-text, this research proposes an optimized GloVe-CNN-BiLSTM-based sentiment analysis model. In this model, GloVe is used to vectorize words, and CNN is given to represent part space character. BiLSTM is used to build temporal relationship. Twitter’s comment data on COVID-19 is used as an experimental dataset. The results of the experiments suggest that this method can effectually identify the sentimental tendency of users’ online comments, and the accuracy of sentiment classification on complete-text, long-text, and short-text can achieve to 0.9565, 0.9509, and 0.9560, respectively, which is obviously higher than other deep learning models. At the same time, experiments show that this method has good field expansion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.