Improving the efficiency of the agricultural irrigation systems substantially contributes to sustainable water management. This improvement can be achieved through an automated irrigation system that includes a real-time control strategy based on the water, soil, and crop relationship. This paper presents a model driven control strategy applied to an irrigation system, in order to make an efficient use of water for large crop fields, that is, applying the correct amount of water in the correct place at the right moment. The proposed model uses a predictive algorithm that senses soil moisture and weather variables, to determine optimal amount of water required by the crop. This proposed approach is evaluated against a traditional irrigation system based on the empirical definition of time periods and against a basic soil moisture control system. Results indicate that the use of a model predictive control in an irrigation system achieves a higher efficiency and significantly reduce the water consumption.
Abstract. Statecharts [9] are widely used for the requirements specification of reactive systems. In this paper, we present a framework for the automatic generation of layouts of statechart diagrams. Our framework is based on several techniques that include hierarchical drawing, labeling, and floorplanning, designed to work in a cooperative environment. Therefore, the resulting drawings enjoy several important properties: they emphasize the natural hierarchical decomposition of states into substates; they have a low number of edge crossings; they have good aspect ratio; and require a small area. We have implemented our framework and obtained drawings for several statechart examples. The preliminary drawings are very encouraging.
We present a framework for the automatic generation of layouts of statechart diagrams. Statecharts [16] are widely used for the requirements specification of reactive systems. Our framework is based on several techniques that include hierarchical drawing, labeling, and floorplanning, designed to work in a cooperative environment. Therefore, the resulting drawings enjoy several important properties: they emphasize the natural hierarchical decomposition of states into substates; they have a low number of edge crossings; they have good aspect ratio; and require a small area. We also present techniques for interactive operations. We have implemented our framework and obtained drawings for several statechart examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.