A positive symmetry test result was obtained with a capuchin monkey that had previously exhibited virtually errorless AB and BA arbitrary matching-to-sample (MTS) with different stimuli. The symmetry test (BA) followed the acquisition of a new AB relation. It seemed possible, however, that the positive result could have occurred through the exclusion of previously defined comparison stimuli and not because the new AB and BA relations had the property of symmetry. To assess this possibility, a blank-comparison MTS procedure was implemented that permitted the separate assessment of select and reject (i.e., exclusion) control with both baseline and BA matching relations. In this assessment, the monkey did not exhibit reliable BA matching when exclusion was not possible, thus showing that the symmetry result was a false positive. However, the study demonstrated the feasibility of using a blank comparison MTS procedure with capuchins. The present results may set the stage for more successful methodology for establishing desired forms of relational stimulus control in capuchins and ultimately improving the assessment of relational learning capacity in that species, other nonhuman species, and nonverbal humans.
A "second generation" matching-to-sample procedure that minimizes past sources of artifacts involves (1) successive discrimination between sample stimuli, (2) stimulus displays ranging from four to 16 comparisons, (3) variable stimulus locations to avoid unwanted stimulus-location control, and (4) high accuracy levels (e.g., 90% correct on a 16-choice task in which chance accuracy is 6%). Examples of behavioral engineering with experienced capuchin monkeys included four-choice matching problems with video images of monkeys with substantially above-chance matching in a single session and 90% matching within six sessions. Exclusion performance was demonstrated by interspersing non-identical sample-comparison pairs within a baseline of a nine-comparison identity-matching-to-sample procedure with pictures as stimuli. The test for exclusion presented the newly "mapped" stimulus in a situation in which exclusion was not possible. Degradation of matching between physically non-identical forms occurred while baseline identity accuracy was sustained at high levels, thus confirming that Cebus cf. apella is capable of exclusion. Additionally, exclusion performance when baseline matching relations involved non-identical stimuli was shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.