This work addresses the development of wide range compliance solutions for tensile-loaded and bend specimens based on CMOD. The study covers selected standard and non-standard fracture test specimens, including the compact tension C(T) configuration, the single edge notch tension SE(T) specimen with fixed-grip loading (clamped ends) and the single edge notch bend SE(B) geometry with varying specimen spam over width ratio and loaded under 3-point and 4-point flexural configuration. Very detailed elastic finite element analysis in 2-D setting are conducted on fracture models with varying crack sizes to generate the evolution of load with displacement for those configurations from which the dependence of specimen compliance on crack length, specimen geometry and loading mode is determined. The extensive numerical analyses conducted here provide a larger set of solutions upon which more accurate experimental evaluations of crack size changes in fracture toughness and fatigue crack growth testing can be made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.