We construct the first example of a superstratum: a class of smooth horizonless supergravity solutions that are parameterized by arbitrary continuous functions of (at least) two variables and have the same charges as the supersymmetric D1-D5-P black hole. We work in Type IIB string theory on T 4 or K3 and our solutions involve a subset of fields that can be described by a six-dimensional supergravity with two tensor multiplets. The solutions can thus be constructed using a linear structure, and we give an explicit recipe to start from a superposition of modes specified by an arbitrary function of two variables and impose regularity to obtain the full horizonless solutions in closed form. We also give the precise CFT description of these solutions and show that they are not dual to descendants of chiral primaries. They are thus much more general than all the known solutions whose CFT dual is precisely understood. Hence our construction represents a substantial step toward the ultimate goal of constructing the fully generic superstratum that can account for a finite fraction of the entropy of the three-charge black hole in the regime of parameters where the classical black hole solution exists.
We construct the first family of horizonless supergravity solutions that have the same mass, charges, and angular momenta as general supersymmetric rotating D1-D5-P black holes in five dimensions. This family includes solutions with arbitrarily small angular momenta, deep within the regime of quantum numbers and couplings for which a large classical black hole exists. These geometries are well approximated by the black-hole solution, and in particular exhibit the same near-horizon throat. Deep in this throat, the black-hole singularity is resolved into a smooth cap. We also identify the holographically dual states in the N=(4,4) D1-D5 orbifold conformal field theory (CFT). Our solutions are among the states counted by the CFT elliptic genus, and provide examples of smooth microstate geometries within the ensemble of supersymmetric black-hole microstates.
We show that the boundary state description of a Dp-brane is strictly related to the corresponding classical solution of the low-energy string effective action. By projecting the boundary state on the massless states of the closed string we obtain the tension, the R-R charge and the large distance behavior of the classical solution. We discuss both the case of a single D-brane and that of bound states of two D-branes. We also show that in the R-R sector the boundary state, written in a picture which treats asymmetrically the left and right components, directly yields the R-R gauge potentials.
Abstract:We construct an infinite family of smooth asymptotically-flat supergravity solutions that have the same charges and angular momenta as general supersymmetric D1-D5-P black holes, but have no horizon. These solutions resemble the corresponding black hole to arbitrary accuracy outside of the horizon: they have asymptotically flat regions, AdS 3 × S 3 throats and very-near-horizon AdS 2 throats, which however end in a smooth cap rather than an event horizon. The angular momenta of the solutions are general, and in particular can take arbitrarily small values. Upon taking the AdS 3 × S 3 decoupling limit, we identify the holographically-dual CFT states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.