Countries rely on good diagnostic tests and appropriate testing schemes to fight against economically important small ruminant lentivirus (SRLV) infections. We undertook an extensive comparative analysis of seven commercially available serological tests and one in-house real-time PCR (qPCR) detecting genotype A and B strains using a large panel of representative Belgian field samples and samples from experimentally infected sheep and goats. ELISAs generally performed well and detected seroconversion within three weeks post experimental infection. Two enzyme-linked immunosorbent assays (ELISAs) (Elitest and IDscreen® kits) showed the highest sensitivities (>96%) and specificities (>95%) in both species, and their combined use allowed to correctly identify the infection status of all animals. Individual agar gel immunodiffusion (AGIDs) kits lacked sensitivity, but interestingly, the combined use of both kits had a sensitivity and specificity of 100%. qPCRs detected SRLV infection before seroconversion at two weeks post infection and showed a specificity of 100%. Sensitivity however remained suboptimal at 85%. These results allow to propose a faster and cheaper diagnostic testing strategy for Belgium by combining a first ELISA screening, followed by confirmation of positive samples in AGID and/or a second ELISA. Since genotypes A and B strains are predominant in many countries, these results are interesting for other countries implementing SRLV control programs.
Small ruminant lentiviruses (SRLV) are a group of highly divergent viruses responsible for global and fatal infections in sheep and goats. Since the current phylogenetic classification of these viruses was proposed in 2004, it nowadays consists out of 5 genotypes and 28 subtypes. In support of our national SRLV control program, we performed the genetic characterization of SRLV strains circulating in the Belgian sheep and goat population. Fourteen sheep and 9 goat strains were sequenced in the gag-pol and pol regions using the method described by Shah. Most SRLV strains from sheep and goats belonged to prototype A1 and B1 subtypes, respectively. We, however, also found indications for cross-species transmission of SRLV strains between sheep and goats and vice versa, and identified a new subtype designated as B5. An in-depth analysis of the current SRLV phylogeny revealed that many subtypes have been defined over the years based on limited sequence information. To keep phylogeny as a useful tool, we advocate to apply more rigorous sequencing standards to ensure the correct classification of current and new emerging strains. The genetic characterization of Belgian SRLV strains will help in the development of appropriate diagnostic tools to assist the national control program.
Small ruminant lentivirus (SRLV) control programs are mainly based on diagnostic tests performed on blood samples collected from sheep and goats. Since blood sampling is costly and stressful for the animals, we evaluated whether milk could be used as an inexpensive and easily collectable matrix for SRLV detection. We therefore compared SRLV detection via two commercial enzyme-linked immunosorbent assays (ELISAs) and quantitative polymerase chain reaction (qPCR) in blood and corresponding milk samples from 321 goats originating from eight different SRLV-infected farms in Flanders (Belgium). The IDscreen® ELISA had a better relative sensitivity (97% vs 93%) and specificity (100% and 97%) than the Elitest® ELISA for SRLV-specific antibody detection in milk compared to serum. The higher sensitivity correlates with a 10-fold higher analytical sensitivity of the IDscreen® test. In contrast to the overall good ELISA results, qPCR on milk cell pellets lacked sensitivity (81%) and specificity (88%), compared to molecular detection in blood leucocyte pellets. Our results show that serology is more suitable than qPCR for SRLV diagnosis, and that milk may represent an interesting matrix for a preliminary evaluation of a herd’s infection status. Serum remains however the sample of choice for control programs where it is important to identify positive animals with the highest sensitivity.
Maedi-Visna-like genotype A strains and Caprine arthritis encephaltis-like genotype B strains are small ruminant lentiviruses (SRLV) which, for incompletely understood reasons, appear to be more virulent in sheep and goats, respectively. A 9-month in vivo infection experiment using Belgian genotype A and B SRLV strains showed that almost all homologous (genotype A in sheep; genotype B in goats) and heterologous (genotype A in goats; genotype B in sheep) intratracheal inoculations resulted in productive infection. No differences in viremia and time to seroconversion were observed between homologous and heterologous infections. Higher viral loads and more severe lesions in the mammary gland and lung were however detected at 9 months post homologous compared to heterologous infection which coincided with strongly increased IFN-γ mRNA expression levels upon homologous infection. Pepscan analysis revealed a strong antibody response against immune-dominant regions of the capsid and surface proteins upon homologous infection, which was absent after heterologous infection. These results inversely correlated with protection against virus replication in target organs and observed histopathological lesions, and thus require an in-depth evaluation of a potential role of antibody dependent enhancement in SRLV infection. Finally, no horizontal intra- and cross-species SRLV transmission to contact animals was detected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.