Abstract-This paper presents a complete ray-tracing based model which takes into account scattering from rough surfaces in indoor environments. The proposed model relies on a combination between computer graphics and radar techniques. The paths between the transmitter and the receiver are found thanks to a Bi-Directional Path-Tracing algorithm, and the scattering field after each interaction between the electromagnetic wave and the environment is computed according to the Kirchhoff Approximation. This propagation model is implemented as a plug-in in an existing full 3-D ray-tracing software. Thus, we compare the results of classical ray-tracing with those of our model to study the influence of the scattering phenomenon on the wave propagation in typical indoor environments.
Kinematic analysis is indispensable to understanding and characterizing human locomotion. Thanks to the development of inertial sensors based on microelectronics systems, human kinematic analysis in an ecological environment is made possible. An important issue in human kinematic analyses with inertial sensors is the necessity of defining the orientation of the inertial sensor coordinate system relative to its underlying segment coordinate system, which is referred to sensor-to-segment calibration. Over the last decade, we have seen an increase of proposals for this purpose. The aim of this review is to highlight the different proposals made for lower-body segments. Three different databases were screened: PubMed, Science Direct and IEEE Xplore. One reviewer performed the selection of the different studies and data extraction. Fifty-five studies were included. Four different types of calibration method could be identified in the articles: the manual, static, functional, and anatomical methods. The mathematical approach to obtain the segment axis and the calibration evaluation were extracted from the selected articles. Given the number of propositions and the diversity of references used to evaluate the methods, it is difficult today to form a conclusion about the most suitable. To conclude, comparative studies are required to validate calibration methods in different circumstances.
. In this paper, we propose an approach to model radio wave propagation in these frequency bands in arched shape cross section straight tunnels using tessellation in multi-facets. The model is based on a Ray-Tracing tool using the image method. The work reported in this paper shows the propagation loss variations according to the shape of tunnels. A parametric study on the facets size to model the cross section is conducted. The influence of tunnel dimensions and signal frequency is examined. Finally, some measurement results in an arched cross section straight tunnel are presented and analyzed in terms of slow fadings and fast fadings.
To satisfy the smart grid electrical network, communication systems in high-voltage substations have to be installed in order to control equipments. Considering that those substations were not necessarily designed for adding communication networks, one of the most appropriate solutions is to use wireless sensor network (WSN). However, the high voltage transported through the station generates a strong and specific radio noise. In order to prepare for such a network, the electromagnetic environment has to be characterized and tests in laboratories have to be performed to estimate the communication performances. This paper presents a method for measuring the noise due to high voltage and more particularly the impulsive noise. In the laboratory, we generate the impulsive noise using two specimens, and we show that these laboratory measurements validate the field measurements of Pakala et al. For the two specimens, it aims to link the noise characteristics (magnitude and frequency) with the specimen parameters (power supply and geometric dimensions) to predict the environments where wireless communications can be troublesome. By using different sets of this measured noise, we show that the statistical model of Middleton Class A can be used to model the impulsive noise in high-voltage substations better than the Gaussian model. We consider a cooperative multiple-input-multiple-output (MIMO) system to achieve the wireless sensor communication. This system uses recent MIMO techniques based on precoding like max-d min and P-OSM precoders. The MIMO precoder-based cooperative system is a potential candidate for energy saving in WSN since energy efficiency optimization is a very important critical issue. Since MIMO precoders are with Gaussian noise assumption, we evaluate the performance of several MIMO precoders in the presence of impulsive noise using estimated parameters from the measured noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.