n the past few years, novel components of the renin-angiotensin system (RAS) have been described, including the prorenin/ renin receptor, 1 angiotensin-converting enzyme-2 (ACE2), 2,3 and Mas.4 ACE2 and Mas are now considered to be part of a novel axis of the RAS, the ACE2/angiotensin 1 to 7 [Ang-(1-7)]/Mas axis, 4-11 which counteracts most of the action of the classical Rationale: The renin-angiotensin system (RAS) is a key regulator of the cardiovascular system, electrolyte, and water balance. Here, we report identification and characterization of alamandine, a new heptapeptide generated by catalytic action of angiotensin-converting enzyme-2 angiotensin A or directly from angiotensin-(1-7).Objective: To characterize a novel component of the RAS, alamandine. Methods and Results:Using mass spectrometry we observed that alamandine circulates in human blood and can be formed from angiotensin-(1-7) in the heart. Alamandine produces several physiological actions that resemble those produced by angiotensin-(1-7), including vasodilation, antifibrosis, antihypertensive, and central effects. Key Words: angiotensin II ■ antihypertensive treatment ■ cardiovascular system ■ hypertension ■ renin-angiotensin system ■ vasoactive peptides ■ vascular reactivity Original received February 7, 2013; revision received February 22, 2013; accepted February 27, 2013. In January 2013, the average time from submission to first decision for all original research papers submitted to Circulation Research was 12.2 days.Brief UltraRapid Communications are designed to be a format for manuscripts that are of outstanding interest to the readership, report definitive observations, but have a relatively narrow scope. Less comprehensive than Regular Articles but still scientifically rigorous, BURCs present seminal findings that have the potential to open up new avenues of research. A decision on BURCs is rendered within 7 days of submission.From the
Our observations demonstrate a cardiopulmonary protective role for the ACE2/Ang-(1-7)/Mas axis in the treatment of lung disorders.
Rationale : Studies have demonstrated that angiotensin-converting enzyme 2 (ACE2) plays a protective role against lung diseases, including pulmonary hypertension (PH). Recently, an antitrypanosomal drug, diminazene aceturate (DIZE), was shown to exert an "offtarget" effect of enhancing the enzymatic activity of ACE2 in vitro. Objectives: To evaluate the pharmacological actions of DIZE in experimental models of PH. Methods: PH was induced in male Sprague Dawley rats by monocrotaline, hypoxia, or bleomycin challenge. Subsets of animals were simultaneously treated with DIZE. In a separate set of experiments, DIZE was administered after 3 weeks of PH induction to determine whether the drug could reverse PH. Measurements and Main Results: DIZE treatment significantly prevented the development of PH in all of the animal models studied. The protective effects were associated with an increase in the vasoprotective axis of the lung renin-angiotensin system, decreased inflammatory cytokines, improved pulmonary vasoreactivity, and enhanced cardiac function. These beneficial effects were abolished by C-16, an ACE2 inhibitor. Initiation of DIZE treatment after the induction of PH arrested disease progression. Endothelial dysfunction represents a hallmark of PH pathophysiology, and growing evidence suggests that bone marrow-derived angiogenic progenitor cells contribute to endothelial homeostasis. We observed that angiogenic progenitor cells derived from the bone marrow of monocrotaline-challenged rats were dysfunctional and were repaired by DIZE treatment. Likewise, angiogenic progenitor cells isolated from patients with PH exhibited diminished migratory capacity toward the key chemoattractant stromal-derived factor 1a, which was corrected by in vitro DIZE treatment. Conclusions: Our results identify a therapeutic potential of DIZE in PH therapy.Keywords: pulmonary hypertension; ACE2; angiogenic progenitor cells; diminazene Pulmonary hypertension (PH) is a life-threatening disease characterized by elevated pressure in the pulmonary arteries and What This Study Adds to the FieldWe show that diminazene, an antitrypanosomal drug, attenuates hemodynamic changes, prevents maladaptive right ventricular remodeling, and enhances pulmonary vasorelaxation in experimental models of PH through activation of ACE2. Furthermore, diminazene improves the functions of APCs obtained from experimental animals and patients with PH. This study identifies a new application for an existing drug, which could be successfully developed for PH therapeutics.
Hyperactivity of the axis ACE/AngII/AT1R of the renin‐angiotensin system is associated with occurrence of acute thrombotic event. Recently a novel concept of a counterrugulatory axis, ACE2/Ang‐(1‐7)/Mas, has emerged. We hypothesized that ACE2 would be protective against thrombosis. Thrombus was induced in the vena cava of SHR and WKY rats by FeCl3 solution. ACE2 and ACE protein expression and activities in the thrombus were determined by Western blot and fluorogenic kinetic assays, respectively. Real time thrombus formation was visualized by intravital microscopy of the vessels of nude mice. Ferric chloride‐induced thrombus weight was 40% higher in the SHR compared to WKY rats. This was associated with a 20% decreased in ACE2 activity in the thrombus of the SHR. In contrast, ACE2 protein expression and ACE activity did not differ between the thrombus of WKY rats and SHR. Inhibition of ACE2 by DX600 increased the thrombus weight by 30%, preferentially in the SHR. Furthermore, treatment with XNT resulted in a 30% attenuation of thrombus formation in both the SHR and WKY. In addition, XNT treatment prolonged the time for complete vessel occlusion and reduced thrombus size when observed under real‐time intravital microscopy. Our data demonstrated that a decrease in ACE2 activity is associated with increased thrombus formation in the SHR. Furthermore, activation of ACE2 attenuates thrombus formation.
The antithrombotic effect of angiotensin(Ang)-(1-7) has been reported, but the mechanism of this effect is not known. We investigated the participation of platelets and receptor Mas-related mechanisms in this action. We used Western blotting to test for the presence of Mas protein in rat platelets and used fluorescent-labeled FAM-Ang-(1-7) to determine the specific binding for Ang-(1-7) and its displacement by the receptor Mas antagonist A-779 in rat platelets and in Mas(-/ -) and Mas(+/+) mice platelets. To test whether Ang-(1-7) induces NO release from platelets, we used the NO indicator DAF-FM. In addition we examined the role of Mas in the Ang-(1-7) antithrombotic effect on induced thrombi in the vena cava of male Mas(-/ -) and Mas(+/+) mice. The functional relevance of Mas in hemostasis was evaluated by determining bleeding time in Mas(+/+) and Mas(-/ -) mice. We observed the presence of Mas protein in platelets, as indicated by Western Blot, and displacement of the binding of fluorescent Ang-(1-7) to rat platelets by A-779. Furthermore, in Mas(+/+) mouse platelets we found specific binding for Ang-(1-7), which was absent in Mas(-/ -) mouse platelets. Ang-(1-7) released NO from rat and Mas(+/+) mouse platelets, and A-779 blocked this effect. The NO release stimulated by Ang-(1-7) was abolished in Mas(-/ -) mouse platelets. Ang-(1-7) inhibited thrombus formation in Mas(+/+) mice. Strikingly, this effect was abolished in Mas(-) (/) (-)mice. Moreover, Mas deficiency resulted in a significant decrease in bleeding time (8.50 +/- 1.47 vs. 4.28 +/- 0.66 min). This study is the first to show the presence of Mas protein and specific binding for Ang-(1-7) in rat and mouse platelets. Our data also suggest that the Ang-(1-7) antithrombotic effect involves Mas-mediated NO release from platelets. More importantly, we showed that the antithrombotic effect of Ang-(1-7) in vivo is Mas dependent and that Mas is functionally important in hemostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.