Gene set analysis aims to identify predefined sets of functionally related genes that are differentially expressed between two conditions. Although gene set analysis has been very successful, by incorporating biological knowledge about the gene sets and enhancing statistical power over gene-by-gene analyses, it does not take into account the correlation (association) structure among the genes. In this work, we present CoGA (Co-expression Graph Analyzer), an R package for the identification of groups of differentially associated genes between two phenotypes. The analysis is based on concepts of Information Theory applied to the spectral distributions of the gene co-expression graphs, such as the spectral entropy to measure the randomness of a graph structure and the Jensen-Shannon divergence to discriminate classes of graphs. The package also includes common measures to compare gene co-expression networks in terms of their structural properties, such as centrality, degree distribution, shortest path length, and clustering coefficient. Besides the structural analyses, CoGA also includes graphical interfaces for visual inspection of the networks, ranking of genes according to their “importance” in the network, and the standard differential expression analysis. We show by both simulation experiments and analyses of real data that the statistical tests performed by CoGA indeed control the rate of false positives and is able to identify differentially co-expressed genes that other methods failed.
The mechanisms of cellular excitability and propagation of electrical signals in the cardiac muscle are very important functionally and pathologically. The heart is constituted by three types of muscle: atrial, ventricular, and specialized excitatory and conducting fi bers. From a physiological and pathophysiological point of view, the conformational states of the sodium channel during heart function constitute a signifi cant aspect for the diagnosis and treatment of heart diseases. Functional states of the sodium channel (closed, open, and inactivated) and their structure help to understand the cardiac regulation processes. There are areas in the cardiac muscle with anatomical and functional differentiation that present automatism, thus subjecting the rest of the fi bers to their own rhythm. The rate of these (pacemaker) areas could be altered by modifi cations in ions, temperature and especially, the autonomic system. Excitability is a property of the myocardium to react when stimulated. Another electrical property is conductivity, which is characterized by a conduction and activation process, where the action potential, by the all-or-nothing law, travels throughout the heart. Heart relaxation also stands out as an active process, dependent on the energetic output and on specificion and enzymatic actions, with the role of sodium channel being outstanding in the functional process. In the gene mutation aspects that encode the rapid sodium channel (SCN5A gene), this channel is responsible for several phenotypes, such as Brugada syndrome, idiopathic ventricular fibrillation, dilated cardiomyopathy, early repolarization syndrome, familial atrial fibrillation, variant 3 of long QT syndrome, multifocal ectopic ventricular contractions originating in Purkinje arborizations, progressive cardiac conduction defect (Lenègre disease), sudden infant death syndrome, sick sinus syndrome, sudden unexplained nocturnal death syndrome, among other sodium channel alterations with clinical overlapping. Finally, it seems appropriate to consider the “sodium channel syndrome” (mutations in the gene of the α subunit of the sodium channel, SCN5A gene) as a single clinical entity that may manifest in a wide range of phenotypes, to thus have a better insight on these cardiac syndromes and potential outcomes for their clinical treatment.
Here, we report a new concept of both the adhesive manner and material, named "adhesive leaf (AL)," based on the leaf of the plant Heteropanax fragrans. The treatment of the corona discharge on the leaf surface can cause the nano-/microdestruction of the leaf epidermis, resulting in an outward release of sap. The glucose-containing sap provided the AL with a unique ability to stick to various substrates such as steel, polypropylene, and glass. Moreover, we reveal that the AL adhesion strength depends on the AL size, as well as the corona-discharge intensity. Conventional adhesives, such as glue and bond, lose their adhesive property and leave dirty residues upon the removal of the attached material. Unlike the conventional methods, the AL is advantageous as it can be repeatedly attached and detached thoroughly until the sap liquid is exhausted; its adhesive ability is maintained for at least three weeks at room temperature. Our findings shed light on a new concept of a biodegradable adhesive material that is created by a simple surface treatment.Evolutionary processes have created the diverse adhesive methods of the organisms in nature [1][2][3][4][5][6] . For instance, on each footpad of the gecko animal, hundreds of thousands of setae with a density of 5300/m 2 exist 7 . Each seta consists of hundreds of spatulas, and each microspatula applies approximately 20 μN using a number of forces including the van der Waals, dipole, and capillary forces 1,2 . All of the forces are congregated and contribute to the adhesion of the gecko onto walls. In contrast to the manner of the gecko foot, chemical adhesive methods are also used in nature; for example, mussels can attach to all surfaces 4,6 . Mussels produce hair-like fibers that are composed of amino acids including 3,4-dihydrxy-L-phenylalanine and lysine, and the fibers allow the mussels to adhere to sea-rock surfaces. Another interesting organism, the Onychophora, squeezes out a slime known as a food web that overcomes its slow migration speed to obtain feed (prey); an adhesive property of the slime is enough to entangle the organism's prey 8 . Taking advantage of nature-developed techniques, the ancient Egyptians made paper from papyrus, which possesses an adhesive property without any additives 9 ; since then, it appears that researchers have continuously studied the adhesive method of organisms for many centuries [1][2][3][5][6][7] . Today, this research area is called biomimetics 10 . By using the morphological benefit of the gecko footpad, for example, gecko tape has been developed to ensure a collective adhesion; a method of the microfabrication of dense arrays of flexible plastic pillars is used to make the gecko tape 7 . A mimicking of the high-strength adhesive material that is produced by mussels has shown that it is nontoxic to living cells, thereby suggesting its potential suitability for surgical and other biomedical applications 11 . Besides, many studies are currently underway to mimic the techniques in nature effectively in terms of biocompatible a...
Optic pathway gliomas (OPG) can cause elevated cerebrospinal fluid (CSF) protein concentrations. We report on two patients with suprasellar low-grade gliomas and high CSF protein levels (590 and 551 mg/dl) that precluded shunt implantation. After two and three doses of bevacizumab, respectively, the levels dropped dramatically to 191 and 178 mg/dl, respectively. Bevacizumab treatment was associated with a decrease in CSF protein level, allowing successful shunt placement. Our results are consistent with the pharmacological mechanism of bevacizumab, which decreases protein leakage from blood vessels to the ventricles.
<p>Caracterizada pela perda lenta e progressiva da função renal, a Doença Renal Crônica (DRC) é causada principalmente por diabetes mellitus e hipertensão arterial sistêmica. Várias são suas consequências para o organismo, como anemia, hiperparatireoidismo secundário e distúrbios hidroeletrolíticos. Os pacientes são atendidos na Liga até serem encaminhados, em fases mais avançadas, para tratamento dialítico ou transplante renal. [...]</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.