We calculate the gauge terms of the one-loop anomalous dimension matrix for the dimension-six operators of the Standard Model effective field theory (SM EFT). Combining these results with our previous results for the λ and Yukawa coupling terms completes the calculation of the one-loop anomalous dimension matrix for the dimension-six operators. There are 1350 CP -even and 1149 CP -odd parameters in the dimension-six Lagrangian for 3 generations, and our results give the entire 2499 × 2499 anomalous dimension matrix. We discuss how the renormalization of the dimension-six operators, and the additional renormalization of the dimension d ≤ 4 terms of the SM Lagrangian due to dimension-six operators, lays the groundwork for future precision studies of the SM EFT aimed at constraining the effects of new physics through precision measurements at the electroweak scale. As some sample applications, we discuss some aspects of the full RGE improved result for essential processes such as gg → h, h → γγ and h → Zγ, for Higgs couplings to fermions, for the precision electroweak parameters S and T , and for the operators that modify important processes in precision electroweak phenomenology, such as the three-body Higgs boson decay h → Z ℓ + ℓ − and triple gauge boson couplings. We discuss how the renormalization group improved results can be used to study the flavor problem in the SM EFT, and to test the minimal flavor violation (MFV) hypothesis. We briefly discuss the renormalization effects on the dipole coefficient C eγ which contributes to µ → eγ and to the muon and electron magnetic and electric dipole moments.
Anomalies in semileptonic B-meson decays present interesting patterns that might be revealing the shape of the new physics to come. Under the assumption that neutrino and charged lepton mass terms are the only sources of flavor violation and given the hierarchy between the two, we find that charged lepton universality violation without charged lepton flavor violation naturally arises. This can account for a deficit of B + → K + µµ over B + → K + ee decays with new physics coupled predominantly to muons and a new physics scale of a few TeV. A generic prediction of this scenario is a large enhacement of tauonic B decay rates that, in particular, could accommodate an excess in B → D ( * ) τ ν. For the most part, the study is carried out in an effective field theory framework with an underlying SU(2) L × U(1) Y symmetry that emphasizes the model-independent correlations between low-and high-energy observables. As an example, a connection between B-decays and top physics is pointed out. To complement the discussion, all possible (spin 0 and 1) leptoquark models are matched to the low-energy field theory so that the effective analysis can be used to survey these candidates for new physics.
On the other hand, the theoretical predictions are very accurate as they only rely on parametrizations of the experimental spectra of the B → D ðÃÞ lν decays with form factors described within the heavy-quark expansion and incorporating constraints from unitarity [10][11][12][13]. Moreover, calculations of the relevant form factors beyond the zero-recoil limit in lattice QCD have started to appear [14][15][16]. The global significance of these anomalies currently stands at ∼ 4σ and they have been addressed in many different models of new physics (NP) .An efficient strategy to analyze the possible NP scenarios is using a bottom-up approach in effective field theory (EFT), which starts with the most-general effective
We generalize the basis of CP-even chiral effective operators describing a dynamical Higgs sector, to the case in which the Higgs-like particle is light. Gauge and gauge-Higgs operators are considered up to four derivatives. This analysis completes the tool needed to explore at leading order the connection between linear realizations of the electroweak symmetry breaking mechanism -whose extreme case is the Standard Model -and non-linear realizations with a light Higgs-like particle present. It may also provide a model-independent guideline to explore which exotic gauge-Higgs couplings may be expected, and their relative strength to Higgsless observable amplitudes. With respect to fermions, the analysis is reduced by nature to the consideration of those flavour-conserving operators that can be written in terms of pure-gauge or gauge-Higgs ones via the equations of motion, but for the standard Yukawa-type couplings.
Familial hypercholesterolaemia (FH) is a dominantly inherited disorder present from birth that markedly elevates plasma low-density lipoprotein (LDL) cholesterol and causes premature coronary heart disease. There are at least 20 million people with FH worldwide, but the majority remains undetected and current treatment is often suboptimal. To address this major gap in coronary prevention we present, from an international perspective, consensus-based guidance on the care of FH. The guidance was generated from seminars and workshops held at an international symposium. The recommendations focus on the detection, diagnosis, assessment and management of FH in adults and children, and set guidelines for clinical purposes. They also refer to best practice for cascade screening and risk notifying and testing families for FH, including use of genetic testing. Guidance on treatment is based on risk stratification, management of non-cholesterol risk factors and safe and effective use of LDL lowering therapies. Recommendations are given on lipoprotein apheresis. The use of emerging therapies for FH is also foreshadowed. This international guidance acknowledges evidence gaps, but aims to make the best use of contemporary practice and technology to achieve the best outcomes for the care of FH. It should accordingly be employed to inform clinical judgment and be adjusted for country-specific and local healthcare needs and resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.