The aim was to verify the validity (i.e., study A) and reliability (i.e., study B) of the alternative maximal accumulated oxygen deficit determined using onlya supramaximal effort (MAODALT)to estimate anaerobic capacity [i.e., estimated by the gold standard maximal accumulated oxygen deficit method (MAOD)] during cycling. In study A, the effects of supramaximal intensities on MAODALT and the comparison with the MAOD were investigated in fourteen active subjects (26 ± 6 years). In study B, the test-retest reliability was investigated, where fourteen male amateur cyclists (29 ± 5 years) performed the MAODALT twice at 115% of the intensity associated to maximal oxygen uptake (). MAODALT determined at 130 and 150% of was lower than MAOD (p ≤ 0.048), but no differences between MAODALT determined at 100, 105, 110, 115, 120 and 140% of (3.58 ± 0.53L; 3.58 ± 0.59L; 3.53 ± 0.52L; 3.48 ± 0.72L; 3.52 ± 0.61L and 3.46 ± 0.69L, respectively) with MAOD (3.99 ± 0.64L). The MAODALT determined from the intensities between 110 and 120% of presented the better agreement and concordance with MAOD. In the test-retest, the MAODALT was not different (p > 0.05), showed high reproducibility when expressed in absolute values (ICC = 0.96, p < 0.01), and a good level of agreement in the Bland-Altman plot analysis (mean differences ± CI95%:−0.16 ± 0.53L). Thus, the MAODALT seems to be valid and reliable to assess anaerobic capacity in cycling.
The purpose of the study was to investigate the sensitivity of an alternative maximal accumulated oxygen deficit (MAOD) method to discriminate the "anaerobic" capacity while comparing: least trained (LT) participants (n = 12), moderately trained (MT) participants (n = 12), endurance trained (ET) participants (n = 16), and rugby (RG) players (n = 11). Participants underwent a graded exercise test on a treadmill and a supramaximal effort for assessing MAOD. MAOD was calculated as the sum of oxygen equivalents from the phosphagen and glycolytic metabolic pathways. MAOD was significantly higher (P < 0.05) in RG (64.4 ± 12.1 mL · kg) than in ET (56.8 ± 5.4 mL · kg; effect size [ES] = 0.77; +13.5%), MT (53.8 ± 5.3 mL · kg; ES = 1.08; +19.8%), and LT (49.9 ± 4.5 mL · kg; ES = 1.50; +36.4%). In addition, the magnitude-based inference analysis revealed that MAOD was likely (LT vs. MT), very likely (MT vs. RG, and ET vs. RG) and most likely (LT vs. ET, and LT vs. RG) different between all groups, except for MT and ET, which presented an unclear difference. In conclusion, MAOD was sensitive enough to distinguish the "anaerobic" capacity in individuals with different training status, especially for RG players compared with LT participants and MT participants.
de Poli, RAB, Boullosa, DA, Malta, ES, Behm, D, Lopes, VHF, Barbieri, FA, and Zagatto, AM. Cycling performance enhancement after drop jumps may be attributed to postactivation potentiation and increased anaerobic capacity. J Strength Cond Res 34(9): 2465–2475, 2020—The study aimed to investigate the effects of drop jumps (DJs) on supramaximal cycling performance, anaerobic capacity (AC), electromyography, and fatigue. Thirty-eight recreational cyclists participated into 3 independent studies. In study 1 (n = 14), neuromuscular fatigue was assessed with the twitch interpolation technique. In study 2 (n = 16), the AC and metabolic contributions were measured with the maximal accumulated oxygen deficit method and the sum of the glycolytic and phosphagen pathways. In study 3 (n = 8), postactivation potentiation (PAP) induced by repeated DJs was evaluated. The DJ protocol was effective for significantly improving cycling performance by +9.8 and +7.4% in studies 1 and 2, respectively (p ≤ 0.05). No differences were observed in electromyography between conditions (p = 0.70); however, the force evoked by a doublet at low (10 Hz) and high frequencies (100 Hz) declined for control (−16.4 and −23.9%) and DJ protocols (−18.6 and −26.9%) (p < 0.01). Force decline was greater in the DJ condition (p < 0.03). Anaerobic capacity and glycolytic pathway contributions were +7.7 and +9.1% higher after DJ protocol (p = 0.01). Peak force during maximal voluntary contraction (+5.6%) and doublet evoked force at 100 Hz (+5.0%) were higher after DJs. The DJ protocol induced PAP, improved supramaximal cycling performance, and increased AC despite higher peripheral fatigue.
The aim of the present study was to investigate the differences in energy system contributions and temporal variables between offensive and all-round playing styles. Fifteen male table tennis players (Offensive players: N = 7; All-round players: N = 8) participated in the study. Matches were monitored by a portable gas analyzer and the blood lactate responses was also measured. The contributions of the oxidative (WOXID), phosphagen (WPCr), and glycolytic (W[La]) energy systems were assumed as the oxygen consumption measured during the matches above of baseline value, the fast component of excess post-exercise oxygen consumption (EPOCFAST) measured after the matches, and the net of blood lactate concentration (Δ[La]), respectively. Energy systems contributions were not significantly different between the offensive and all-round playing styles (WOXID: 96.1±2.0 and 97.0±0.6%, P = 0.86; WPCr: 2.7±1.7 and 2.0±0.6%, P = 0.13; W[La]: 1.2±0.5 and 1.0±0.7%, P = 0.95; respectively), however, magnitude-based analysis of WPCr presented Likely higher contribution for offensive compared to all-round players. Regarding temporal variables, only rate of shots presented higher values for offensive when compared to all-round players (P = 0.03), while the magnitude-based analysis presented Very likely lower, Likely lower and Likely higher outcomes of rate of shots, WPCr and maximal oxygen consumption, respectively, for all-round players. Strong negative correlation was verified for offensive players between number of shots and WPCr (r = -0.86, P = 0.01), while all-round players showed strong correlations between rally duration, WOXID (r = 0.76, P = 0.03) and maximal oxygen consumption (r = 0.81, P = 0.03). Therefore, despite no differences in energy system contributions for offensive and all-round players, different playing styles seems to requires specific energy systems demands.
The aim of the current study was to investigate the effects of acute caffeine supplementation on anaerobic capacity determined by the alternative maximal accumulated oxygen deficit (MAOD) in running effort. Eighteen recreational male runners [29 ± 7years; total body mass 72.1 ± 5.8 kg; height 176.0 ± 5.4cm; maximal oxygen uptake (VO) 55.8 ± 4.2 ml·kg ·min] underwent a graded exercise test. Caffeine (6 mg·kg) or a placebo were administered 1 hr before the supramaximal effort at 115% of the intensity associated with VO in a double-blind, randomized cross-over study, for MAOD assessment. The time to exhaustion under caffeine condition (130.2 ± 24.5s) was 11.3% higher (p = .01) than placebo condition (118.8 ± 24.9 s) and the qualitative inference for substantial changes showed a very likely positive effect (93%). The net participation of the oxidative phosphorylation pathway was significantly higher in the caffeine condition (p = .02) and showed a likely positive effect (90%) of 15.3% with caffeine supplementation. The time constant of abrupt decay of excess postexercise oxygen consumption (τ) was significantly different between caffeine and placebo conditions (p = .03) and showed a likely negative effect (90%), decreasing -8.0% with caffeine supplementation. The oxygen equivalents estimated from the glycolytic and phosphagen metabolic pathways showed a possibly positive effect (68%) and possibly negative effect (78%) in the qualitative inference with caffeine ingestion, respectively. However, the MAOD did not differ under the caffeine or placebo conditions (p = .68). Therefore, we can conclude that acute caffeine ingestion does not modify the MAOD, reinforcing the robustness of this method. However, caffeine ingestion can alter the glycolytic and phosphagen metabolic pathway contributions to MAOD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.