Schistosomiasis remains a serious health issue nowadays for an estimated one billion people in 79 countries around the world. Great efforts have been made to identify good vaccine candidates during the last decades, but only three molecules reached clinical trials so far. The reverse vaccinology approach has become an attractive option for vaccine design, especially regarding parasites like Schistosoma spp. that present limitations for culture maintenance. This strategy also has prompted the construction of multi-epitope based vaccines, with great immunological foreseen properties as well as being less prone to contamination, autoimmunity, and allergenic responses. Therefore, in this study we applied a robust immunoinformatics approach, targeting S. mansoni transmembrane proteins, in order to construct a chimeric antigen. Initially, the search for all hypothetical transmembrane proteins in GeneDB provided a total of 584 sequences. Using the PSORT II and CCTOP servers we reduced this to 37 plasma membrane proteins, from which extracellular domains were used for epitope prediction. Nineteen common MHC-I and MHC-II binding epitopes, from eight proteins, comprised the final multi-epitope construct, along with suitable adjuvants. The final chimeric multi-epitope vaccine was predicted as prone to induce B-cell and IFN-γ based immunity, as well as presented itself as stable and non-allergenic molecule. Finally, molecular docking and molecular dynamics foresee stable interactions between the putative antigen and the immune receptor TLR 4. Our results indicate that the multi-epitope vaccine might stimulate humoral and cellular immune responses and could be a potential vaccine candidate against schistosomiasis.
We present the newest version of CoryneRegNet, the reference database for corynebacterial regulatory interactions, available at www.exbio.wzw.tum.de/coryneregnet/. The exponential growth of next-generation sequencing data in recent years has allowed a better understanding of bacterial molecular mechanisms. Transcriptional regulation is one of the most important mechanisms for bacterial adaptation and survival. These mechanisms may be understood via an organism's network of regulatory interactions. Although the Corynebacterium genus is important in medical, veterinary and biotechnological research, little is known concerning the transcriptional regulation of these bacteria. Here, we unravel transcriptional regulatory networks (TRNs) for 224 corynebacterial strains by utilizing genome-scale transfer of TRNs from four model organisms and assigning statistical significance values to all predicted regulations. As a result, the number of corynebacterial strains with TRNs increased twenty times and the back-end and front-end were reimplemented to support new features as well as future database growth. CoryneRegNet 7 is the largest TRN database for the Corynebacterium genus and aids in elucidating transcriptional mechanisms enabling adaptation, survival and infection.
Kombucha is a multispecies microbial ecosystem mainly composed of acetic acid bacteria and osmophilic acid-tolerant yeasts, which is used to produce a probiotic drink. Furthermore, Kombucha Mutualistic Community (KMC) has been recently proposed to be used during long space missions as both a living functional fermented product to improve astronauts' health and an efficient source of bacterial nanocellulose. In this study, we compared KMC structure and functions before and after samples were exposed to the space/Mars-like environment outside the International Space Station in order to investigate the changes related to their re-adaptation to Earth-like conditions by shotgun metagenomics, using both diversity and functional analyses of Community Ecology and Complex Networks approach. Our study revealed that the long-term exposure to space/Mars-like conditions on low Earth orbit may disorganize the KMC to such extent that it will not restore the initial community structure; however, KMC core microorganisms of the community were maintained. Nonetheless, there were no significant differences in the community functions, meaning that the KMC communities are ecologically resilient. Therefore, despite the extremely harsh conditions, key KMC species revived and provided the community with the genetic background needed to survive long periods of time under extraterrestrial conditions.
Approximately 75% of the worldwide production of hard natural fibers originates from sisal, an industrial crop from arid and semiarid tropical regions. Brazil is the world's largest producer of sisal fiber, accounting for more than 40% of the worldwide production, and sisal bole rot disease has been the main phytosanitary problem of this crop. All previous studies reporting Aspergillus niger as the causal agent of the disease were based on the morphological features of fungal isolates from infected plant tissues in pure cultures. Black aspergilli are one of the most complex and difficult groups to classify and identify. Therefore, we performed an integrative analysis of this disease based on the isolation of black aspergilli from the endospheres and soils in the root zones of symptomatic adult plants, in vivo pathogenicity tests, histopathology of symptomatic plants, and molecular phylogeny and worldwide genetic variability of the causal agent. All sisal isolates were pathogenic and unequivocally produced symptoms of bole rot disease in healthy plants. In all tree-based phylogenetic methods used, a monophyletic group formed by A. welwitschiae along with all sisal isolates was retrieved. Ten A. welwitschiae haplotypes have been identified in the world, and three occur in the largest sisal-producing area. Most of the isolates are from a unique haplotype, present in only the sisal-producing region. A. welwitschiae destroyed parenchymatic and vascular cylinder cells and induced the necrosis of internal stem tissues. Therefore, sisal bole disease is probably the consequence of a saprotrophic fungus that opportunistically invades sisal plants and behaves as a typical necrotrophic pathogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.