Principal component analysis is a technique widely used for studying the movements of proteins using data collected from molecular dynamics simulations. In spite of its extensive use, the technique has a serious drawback: equivalent simulations do not afford the same PC-modes. In this article, we show that concatenating equivalent trajectories and calculating the PC-modes from the concatenated one significantly enhances the reproducibility of the results. Moreover, the consistency of the modes can be systematically improved by adding more individual trajectories to the concatenated one.
The enzyme UDP-Galactopyranose Mutase (UGM) catalyses the conversion of galactopyranose into galactofuranose. It is known to be critical for the survival and proliferation of several pathogenic agents, both prokaryotic and eukaryotic. Among them is Trypanosoma cruzi, the parasite responsible for Chagas' disease. Since the enzyme is not present in mammals, it appears as a promising target for the design of drugs to treat this illness. A precise knowledge of the mechanism of the catalysed reaction would be crucial to assist in such design. In this article we present a detailed study of all the putative steps of the mechanism. The study is based on QM/MM free energy calculations along properly selected reaction coordinates, and on the analysis of the main structural changes and interactions taking place at every step. The results are discussed in connection with the experimental evidence and previous theoretical studies.
Galactose is an abundant monosaccharide found exclusively in mammals as galactopyranose (Gal p), the six-membered ring form of this sugar. In contrast, galactose appears in many pathogenic microorganisms as the five-membered ring form, galactofuranose (Gal f). Gal f biosynthesis begins with the conversion of UDP-Gal p to UDP-Gal f catalyzed by the flavoenzyme UDP-galactopyranose mutase (UGM). Because UGM is essential for the survival and proliferation of several pathogens, there is interest in understanding the catalytic mechanism to aid inhibitor development. Herein, we have used kinetic measurements and molecular dynamics simulations to explore the features of UGM that control the rate-limiting step (RLS). We show that UGM from the pathogenic fungus Aspergillus fumigatus also catalyzes the isomerization of UDP-arabinopyranose (UDP-Ara p), which differs from UDP-Gal p by lacking a -CH-OH substituent at the C5 position of the hexose ring. Unexpectedly, the RLS changed from a chemical step for the natural substrate to product release with UDP-Ara p. This result implicated residues that contact the -CH-OH of UDP-Gal p in controlling the mechanistic path. The mutation of one of these residues, Trp315, to Ala changed the RLS of the natural substrate to product release, similar to the wild-type enzyme with UDP-Ara p. Molecular dynamics simulations suggest that steric complementarity in the Michaelis complex is responsible for this distinct behavior. These results provide new insight into the UGM mechanism and, more generally, how steric factors in the enzyme active site control the free energy barriers along the reaction path.
BackgroundThiazolidinone derivatives show inhibitory activity (IC50) against the Toxoplasma gondii parasite, as well as high selectivity with high therapeutic index. To disclose the target proteins of the thiazolidinone core in this parasite, we explored in silico the active sites of different T. gondii proteins and estimated the binding-free energy of reported thiazolidinone molecules with inhibitory effect on invasion and replication of the parasite inside host cells. This enabled us to describe some of the most suitable structural characteristics to design a compound derived from the thiazolidinone core.ResultsThe best binding affinity was observed in the active site of kinase proteins, we selected the active site of the T. gondii ROP18 kinase, because it is an important factor for the virulence and survival of the parasite. We present the possible effect of a derivative of thiazolidinone core in the active site of T. gondii ROP18 and described some characteristics of substituent groups that could improve the affinity and specificity of compounds derived from the thiazolidinone core against T. gondii.ConclusionsThe results of our study suggest that compounds derived from the thiazolidinone core have a preference for protein kinases of T. gondii, being promising compounds for the development of new drugs with potential anti-toxoplasmosis activity. Our findings highlight the importance of use computational studies for the understanding of the action mechanism of compounds with biological activity.Electronic supplementary materialThe online version of this article (10.1186/s12864-018-5223-7) contains supplementary material, which is available to authorized users.
The enzyme UDP-galactopyranose mutase (UGM) represents a promising drug target for the treatment of infections with Trypanosoma cruzi. We have computed the Potential of Mean Force for the release of UDP-galactopyranose from UGM, using Umbrella Sampling simulations. The simulations revealed the conformational changes that both substrate and enzyme undergo during the process. It was determined that the galactopyranose portion of the substrate is highly mobile and that the opening/closing of the active site occurs in stages. Previously uncharacterized interactions with highly conserved residues were also identified. These findings provide new pieces of information that contribute to the rational design of drugs against T. cruzi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.