An extensive analysis of the presence of different altmetric indicators provided by Altmetric.com across scientific fields is presented, particularly focusing on their relationship with citations. Our results confirm that the presence and density of social media altmetric counts are still very low and not very frequent among scientific publications, with 15%-24% of the publications presenting some altmetric activity and concentrated on the most recent publications, although their presence is increasing over time. Publications from the social sciences, humanities, and the medical and life sciences show the highest presence of altmetrics, indicating their potential value and interest for these fields. The analysis of the relationships between altmetrics and citations confirms previous claims of positive correlations but is relatively weak, thus supporting the idea that altmetrics do not reflect the same kind of impact as citations. Also, altmetric counts do not always present a better filtering of highly-cited publications than journal citation scores. Altmetric scores (particularly mentions in blogs) are able to identify highly-cited publications with higher levels of precision than journal citation scores (JCS), but they have a lower level of recall. The value of altmetrics as a complementary tool of citation analysis is highlighted, although more research is suggested to disentangle the potential meaning and value of altmetric indicators for research evaluation.
Numerous biases are believed to affect the scientific literature, but their actual prevalence across disciplines is unknown. To gain a comprehensive picture of the potential imprint of bias in science, we probed for the most commonly postulated bias-related patterns and risk factors, in a large random sample of meta-analyses taken from all disciplines. The magnitude of these biases varied widely across fields and was overall relatively small. However, we consistently observed a significant risk of small, early, and highly cited studies to overestimate effects and of studies not published in peer-reviewed journals to underestimate them. We also found at least partial confirmation of previous evidence suggesting that US studies and early studies might report more extreme effects, although these effects were smaller and more heterogeneously distributed across meta-analyses and disciplines. Authors publishing at high rates and receiving many citations were, overall, not at greater risk of bias. However, effect sizes were likely to be overestimated by early-career researchers, those working in small or long-distance collaborations, and those responsible for scientific misconduct, supporting hypotheses that connect bias to situational factors, lack of mutual control, and individual integrity. Some of these patterns and risk factors might have modestly increased in intensity over time, particularly in the social sciences. Our findings suggest that, besides one being routinely cautious that published small, highly-cited, and earlier studies may yield inflated results, the feasibility and costs of interventions to attenuate biases in the literature might need to be discussed on a discipline-specific and topic-specific basis.bias | misconduct | meta-analysis | integrity | meta-research
In this paper an analysis of the presence and possibilities of altmetrics for bibliometric and performance analysis is carried out. Using the web based tool Impact Story, we collected metrics for 20,000 random publications from the Web of Science. We studied both the presence and distribution of altmetrics in the set of publications, across fields, document types and over publication years, as well as the extent to which altmetrics correlate with citation indicators. The main result of the study is that the altmetrics source that provides the most metrics is Mendeley, with metrics on readerships for 62.6% of all the publications studied, other sources only provide marginal information. In terms of relation with citations, a moderate spearman correlation (r=0.49) has been found between Mendeley readership counts and citation indicators. Other possibilities and limitations of these indicators are discussed and future research lines are outlined.
The relationship of the h-index with other bibliometric indicators at the micro level is analysed for Spanish CSIC scientists in Natural Resources, using publications downloaded from the Web of Science (1994)(1995)(1996)(1997)(1998)(1999)(2000)(2001)(2002)(2003)(2004). Different activity and impact indicators were obtained to describe the research performance of scientists in different dimensions, being the h-index located through factor analysis in a quantitative dimension highly correlated with the absolute number of publications and citations. The need to include the remaining dimensions in the analysis of research performance of scientists and the risks of relying only on the h-index are stressed. The hypothesis that the achievement of some highly visible but intermediate-productive authors might be underestimated when compared with other scientists by means of the h-index is tested.
A number of new metrics based on social media platforms—grouped under the term “altmetrics”—have recently been introduced as potential indicators of research impact. Despite their current popularity, there is a lack of information regarding the determinants of these metrics. Using publication and citation data from 1.3 million papers published in 2012 and covered in Thomson Reuters’ Web of Science as well as social media counts from Altmetric.com, this paper analyses the main patterns of five social media metrics as a function of document characteristics (i.e., discipline, document type, title length, number of pages and references) and collaborative practices and compares them to patterns known for citations. Results show that the presence of papers on social media is low, with 21.5% of papers receiving at least one tweet, 4.7% being shared on Facebook, 1.9% mentioned on blogs, 0.8% found on Google+ and 0.7% discussed in mainstream media. By contrast, 66.8% of papers have received at least one citation. Our findings show that both citations and social media metrics increase with the extent of collaboration and the length of the references list. On the other hand, while editorials and news items are seldom cited, it is these types of document that are the most popular on Twitter. Similarly, while longer papers typically attract more citations, an opposite trend is seen on social media platforms. Finally, contrary to what is observed for citations, it is papers in the Social Sciences and humanities that are the most often found on social media platforms. On the whole, these findings suggest that factors driving social media and citations are different. Therefore, social media metrics cannot actually be seen as alternatives to citations; at most, they may function as complements to other type of indicators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.