Brown adipose tissue (BAT), body and brain temperatures, as well as behavioral activity, arterial pressure and heart rate, increase episodically during the waking (dark) phase of the circadian cycle in rats. Phase-linking of combinations of these ultradian (<24 hour) events has previously been noted, but no synthesis of their overall interrelationships has emerged. We hypothesized that they are coordinated by brain central command, and that BAT thermogenesis, itself controlled by the brain, contributes to increases in brain and body temperature. We used chronically implanted instruments to measure combinations of BAT, brain and body temperatures, behavioral activity, tail artery blood flow, and arterial pressure and heart rate, in conscious freely moving Sprague-Dawley rats during the 12 hour dark active period. Ambient temperature was kept constant for any particular 24 hour day, varying between 22°C and 27°C on different days. Increases in BAT temperature (≥0.5°C) occurred in an irregular episodic manner every 94±43 min (mean±SD). Varying the temperature over a wider range (18-30°C) on different days did not change the periodicity, and neither body nor brain temperature fell before BAT temperature episodic increases. These increases are thus unlikely to reflect thermoregulatory homeostasis. Episodic BAT thermogenesis still occurred in food-deprived rats. Behavioral activity, arterial pressure (18±5 mmHg every 98±49 min) and heart rate (86±31 beats/min) increased approximately 3 min before each increase in BAT temperature. Increases in BAT temperature (1.1±0.4°C) were larger than corresponding increases in brain (0.8±0.4°C) and body (0.6±0.3°C) temperature and the BAT episodes commenced 2-3 min before body and brain episodes, suggesting that BAT thermogenesis warms body and brain. Hippocampal 5-8 Hz theta rhythm, indicating active engagement with the environment, increased before the behavioral and autonomic events, suggesting coordination by brain central command as part of the 1-2 hour ultradian basic rest-activity cycle (BRAC) proposed by Kleitman.
Stimulation of neurons in the lateral/dorsolateral periaqueductal grey (l/dlPAG) produces increases in heart rate (HR) and mean arterial pressure (MAP) that are, according to traditional views, mediated through projections to medullary autonomic centres and independent of forebrain mechanisms. Recent studies in rats suggest that neurons in the l/dlPAG are downstream effectors responsible for responses evoked from the dorsomedial hypothalamus (DMH) from which similar cardiovascular changes and increase in core body temperature (T co ) can be elicited. We hypothesized that, instead, autonomic effects evoked from the l/dlPAG depend on neuronal activity in the DMH. Thus, we examined the effect of microinjection of the neuronal inhibitor muscimol into the DMH on increases in HR, MAP and T co produced by microinjection of N -methyl-d-aspartate (NMDA) into the l/dlPAG in conscious rats. Microinjection of muscimol alone modestly decreased baseline HR and MAP but failed to alter T co . Microinjection of NMDA into the l/dlPAG caused marked increases in all three variables, and these were virtually abolished by prior injection of muscimol into the DMH. Similar microinjection of glutamate receptor antagonists into the DMH also suppressed increases in HR and abolished increases in T co evoked from the PAG. In contrast, microinjection of muscimol into the hypothalamic paraventricular nucleus failed to reduce changes evoked from the PAG and actually enhanced the increase in T co . Thus, our data suggest that increases in HR, MAP and T co evoked from the l/dlPAG require neuronal activity in the DMH, challenging traditional views of the place of the PAG in central autonomic neural circuitry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.