Macrophages and thymocytes express P2Z/P2X7nucleotide receptors that bind extracellular ATP. These receptors play a role in immune development and control of microbial infections, but their presence on dendritic cells has not been reported. We investigated whether extracellular ATP could trigger P2Z/P2X7receptor-dependent apoptosis of dendritic cells. Apoptosis could be selectively triggered by tetrabasic ATP, since other purine/pyrimidine nucleotides were ineffective, and it was mimicked by the P2Z receptor agonist, benzoylbenzoyl ATP, and blocked by magnesium and the irreversible antagonist, oxidized ATP. RT-PCR analysis confirmed the mRNA expression of the P2Z/P2X7receptor and the absence of P2X1. Caspase inhibitors and cycloheximide had only a partial effect on the apoptosis, suggesting that a caspase-independent mechanism may also be operative. Brief treatment with ATP led to an increase in the intracellular calcium concentration and permeabilization of the plasma membrane to Lucifer yellow, which diffused throughout the dendritic cell cytosol. Other small extracellular molecules may thus attain a similar intracellular distribution, perhaps activating endogenous proteases that contribute to initiation of apoptosis.
Since their discovery in the 1970s, purinergic receptors have been shown to play key roles in a wide variety of biologic systems and cell types. In the immune system, purinergic receptors participate in innate immunity and in the modulation of the adaptive immune response. In particular, P2 receptors, which respond to extracellular nucleotides, are widely expressed on leukocytes, causing the release of cytokines and chemokines and the formation of inflammatory mediators, and inducing phagocytosis, degranulation, and cell death. The activity of these receptors is regulated by ectonucleotidases—expressed in these same cell types—which regulate the availability of nucleotides in the extracellular environment. In this article, we review the characteristics of the main purinergic receptor subtypes present in the immune system, focusing on the P2 family. In addition, we describe the physiologic roles of the P2 receptors already identified in leukocytes and how they can positively or negatively modulate the development of infectious diseases, inflammation, and pain.
Treatment for tuberculosis is effective with the use of proper antibiotics, but the number of drug-resistant cases is increasing. Drug resistance occurred in 650,000 cases of the 20 million patients in treatment worldwide in 2011, which demonstrates the necessity of finding new therapeutic approaches. In this context, the search for new medicines and immunomodulators could help reduce the prevalence and incidence of multi-drug-resistant tuberculosis cases. Thus several preclinical studies demonstrate the involvement of the P2X7 receptor (P2X7R) in the control of Mycobacterium tuberculosis (MTB) infection. Adenosine triphosphate (ATP), a natural agonist for P2X7R, promotes MTB death and the induction of apoptosis in monocytes and macrophages infected with MTB via activation of P2X7R by extracellular ATP. In addition, P2X7R activation in the presence of ATP increases the expression of major histocompatibility complex (MHC) class II by macrophages infected with Mycobacterium bovis (BCG) or MTB, which contributes to the generation of the antimicrobial immune response via T cells. Nevertheless, one idea that seems overlooked by the “purinergic community” is the use of the high-conductance channel associated with P2X7R to increase the passage of hydrophilic drugs to the cytoplasm of cells that express the P2X7 pore, a potential method for a drug delivery system. In this work, we propose the use of P2X7 agonists in conjunction with low molecular weight anti-tuberculosis medicines for the treatment of multi-drug-resistant tuberculosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.