In social networks such as Orkut, www.orkut.com, a large portion of the user queries refer to names of other people. Indeed, more than 50% of the queries in Orkut are about names of other users, with an average of 1.8 terms per query. Further, the users usually search for people with whom they maintain relationships in the network. These relationships can be modelled as edges in a friendship graph, a graph in which the nodes represent the users. In this context, search ranking can be modelled as a function that depends on the distances among users in the graph, more specifically, of shortest paths in the friendship graph. However, application of this idea to ranking is not straightforward because the large size of modern social networks (dozens of millions of users) prevents efficient computation of shortest paths at query time. We overcome this by designing a ranking formula that strikes a balance between producing good results and reducing query processing time. Using data from the Orkut social network, which includes over 40 million users, we show that our ranking, augmented by this new signal, produces high quality results, while maintaining query processing time small.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.