Recent reports indicate that besides respiratory and systemic symptoms among coronavirus disease (COVID-19) patients, the disease has a wide spectrum of neurological manifestations (encephalitis, meningitis, myelitis, acute disseminated encephalomyelitis, metabolic and acute hemorrhagic necrotizing encephalopathy, cerebrovascular diseases, Guillain-Barré syndrome, polyneuritis cranialis, dysautonomia, and myopathies). The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can spread from the respiratory system to the central nervous system, using transneuronal and hematogenous mechanisms. Although not every COVID-19 patient will test positive for the virus in the cerebrospinal fluid exam, the appearance of neurological symptoms associated with SARS-CoV-2 infection reveals the importance of understanding the neurologic manifestations and capacity for neural invasion associated with the pathogen. These aspects are relevant for correct diagnosis and treatment, and for the potential development of vaccines. This review highlights the latest evidence of SARS-CoV-2 infection with a focus on neurological involvement and potential neuropathogenesis mechanisms.
HIV-1 uses cellular machinery to bud from infected cells. This cellular machinery is comprised of several multiprotein complexes known as endosomal sorting complexes required for transport (ESCRTs). A conserved late domain motif, Pro-Thr-AlaPro (PTAP), located in the p6 region of Gag (p6 Gag ), plays a central role in ESCRT recruitment to the site of virus budding. Previous studies have demonstrated that PTAP duplications are selected in HIV-1-infected patients during antiretroviral therapy; however, the consequences of these duplications for HIV-1 biology and drug resistance are unclear. To address these questions, we constructed viruses carrying a patient-derived PTAP duplication with and without drug resistance mutations in the viral protease. We evaluated the effect of the PTAP duplication on viral release efficiency, viral infectivity, replication capacity, drug susceptibility, and Gag processing. In the presence of protease inhibitors, we observed that the PTAP duplication in p6Gag significantly increased the infectivity and replication capacity of the virus compared to those of viruses bearing only resistance mutations in protease. Our biochemical analysis showed that the PTAP duplication, in combination with mutations in protease, enhances processing between the nucleocapsid and p6 domains of Gag, resulting in more complete Gag cleavage in the presence of protease inhibitors. These results demonstrate that duplication of the PTAP motif in p6Gag confers a selective advantage in viral replication by increasing Gag processing efficiency in the context of protease inhibitor treatment, thereby enhancing the drug resistance of the virus. These findings highlight the interconnected role of PTAP duplications and protease mutations in the development of resistance to antiretroviral therapy. IMPORTANCEResistance to current drug therapy limits treatment options in many HIV-1-infected patients. Duplications in a Pro-Thr-Ala-Pro (PTAP) motif in the p6 domain of Gag are frequently observed in viruses derived from patients on protease inhibitor (PI) therapy. However, the reason that these duplications arise and their consequences for virus replication remain to be established. In this study, we examined the effect of PTAP duplication on PI resistance in the context of wild-type protease or protease bearing PI resistance mutations. We observe that PTAP duplication markedly enhances resistance to a panel of PIs. Biochemical analysis reveals that the PTAP duplication reverses a Gag processing defect imposed by the PI resistance mutations in the context of PI treatment. The results provide a long-sought explanation for why PTAP duplications arise in PI-treated patients.
The success of the Asian bivalve Limnoperna fortunei as an invader in South America is related to its high acclimation capability. It can inhabit waters with a wide range of temperatures and salinity and handle long-term periods of air exposure. We describe the transcriptome of L. fortunei aiming to give a first insight into the phenotypic plasticity that allows non-native taxa to become established and widespread. We sequenced 95,219 reads from five main tissues of the mussel L. fortunei using Roche’s 454 and assembled them to form a set of 84,063 unigenes (contigs and singletons) representing partial or complete gene sequences. We annotated 24,816 unigenes using a BLAST sequence similarity search against a NCBI nr database. Unigenes were divided into 20 eggNOG functional categories and 292 KEGG metabolic pathways. From the total unigenes, 1,351 represented putative full-length genes of which 73.2% were functionally annotated. We described the first partial and complete gene sequences in order to start understanding bivalve invasiveness. An expansion of the hsp70 gene family, seen also in other bivalves, is present in L. fortunei and could be involved in its adaptation to extreme environments, e.g. during intertidal periods. The presence of toll-like receptors gives a first insight into an immune system that could be more complex than previously assumed and may be involved in the prevention of disease and extinction when population densities are high. Finally, the apparent lack of special adaptations to extremely low O2 levels is a target worth pursuing for the development of a molecular control approach.
ACE2 and TMPRSS2 are key players on SARS-CoV-2 entry into host cells. However, it is still unclear whether expression levels of these factors could reflect disease severity. Here, a case–control study was conducted with 213 SARS-CoV-2 positive individuals where cases were defined as COVID-19 patients with respiratory distress requiring oxygen support (N = 38) and controls were those with mild to moderate symptoms of the disease who did not need oxygen therapy along the entire clinical course (N = 175). ACE2 and TMPRSS2 mRNA levels were evaluated in nasopharyngeal swab samples by RT-qPCR and logistic regression analyzes were applied to estimate associations with respiratory outcomes. ACE2 and TMPRSS2 levels positively correlated with age, which was also strongly associated with respiratory distress. Increased nasopharyngeal ACE2 levels showed a protective effect against this outcome (adjOR = 0.30; 95% CI 0.09–0.91), while TMPRSS2/ACE2 ratio was associated with risk (adjOR = 4.28; 95% CI 1.36–13.48). On stepwise regression, TMPRSS2/ACE2 ratio outperformed ACE2 to model COVID-19 severity. When nasopharyngeal swabs were compared to bronchoalveolar lavages in an independent cohort of COVID-19 patients under mechanical ventilation, similar expression levels of these genes were observed. These data suggest nasopharyngeal TMPRSS2/ACE2 as a promising candidate for further prediction models on COVID-19.
These results indicate that a high tendency of pregnant women to produce interleukin-10 can help them control the HIV-1 replication, and this can reduce the risk of vertical transmission. Furthermore, our data suggest a role for maternal antiretroviral treatment in enhancing this phenomenon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.