Core average power density of standard small modular reactors (SMR) are generally limited to 60-65 MW/m 3 , which is 40% lower than for a standard civil PWR in order to accommodate better thermal margins. While designing a SMR core for civil marine propulsion systems, it is required to increase its power density to make more attractive for future deployment. However, there are obvious thermal-hydraulic (TH) concerns regarding a high power density (HPD) core, which needs to be satisfied in order to ensure safe operation through accurate prediction of the TH parameters. This paper presents a coupled neutronic/thermal-hydraulic (TH) hot channel analysis of a HPD 375 MWth soluble-boron-free PWR core using 19.25% 235 U enriched microheterogeneous ThO 2-UO 2 duplex fuel and 16% 235 U enriched homogeneously mixed all-UO 2 fuel with a 15 effective full-power-years (EFPY) core life. To perform this analysis the hybrid Monte Carlo reactor physics code MONK is coupled with sub-channel analysis TH code COBRA-EN. This approach is used to investigate the feasibility of different HPD marine PWR concepts and to identify the main TH challenges characterising these designs. To design HPD cores of between 82 and 111 MW/m 3 , three cases were chosen by optimizing the fuel pin diameter, pin pitch and pitch-to-diameter ratio. These cases have been studied to determine whether TH safety limits are satisfied by evaluating key parameters, such as minimum departure from nucleate boiling ratio, surface heat flux, critical heat flux, cladding inner surface and fuel centreline temperatures, and pressure drop. The results show that it is possible to achieve a core power density of 100 MW/m 3 for both the candidate fuels, a ∼50% improvement on the reference design (63 MW/m 3), while meeting the target core lifetime of 15 EFPY and remaining within TH limits. The size of the pressure vessel can therefore be reduced substantially and the economic competitiveness of the proposed civil marine PWR reactor core significantly improved.
Breed-and-burn Molten Salt Reactors are an interesting option of reactor design that allow high fuel utilization while operating on an open fuel cycle. Such reactors usually require specialized codes in order to model its fuel cycle and the flowing fuel in an unmoderated core. In this work, we propose a design and perform a preliminary analysis of a homogeneous chloride salt single-fluid design. The fuel cycle is analyzed using the EQL0D tool in order to model reactor start-up and transition into an equilibrium state. Core simulation is performed using ATARI, an OpenFOAM-based multiphysics code developed at PSI. Results show that the core size for such a reactor is quite big and that it can be easily started with high-assay LEU. In addition, the core has been designed to promote a quasi-1D flow, opening the possibility of modeling the core with legacy codes in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.