Background Trigeminal Neuropathic Pain (TNP) is a chronic facial pain syndrome caused by a lesion or disease affecting one or more branches of the trigeminal nerve. It may, for example, result from accidental injury to a branch of the trigeminal nerve by trauma or during surgery; it may also be idiopathic. TNP is typically constant, in contrast to most cases of the commoner trigeminal neuralgia. In some cases, pain may be refractory to pharmacological treatment. Peripheral nerve field stimulation is recognized as an effective minimally invasive surgical treatment option for this debilitating condition. To date, stimulation has used conventional tonic waveforms, which generate paraesthesia in the stimulated area. This is the first report of the use of paraesthesia‐free burst pattern stimulation for TNP. Methods Seven patients were treated at the John Radcliffe Hospital for TNP from 2016 to 2018. Mean duration of preoperative symptoms was five years. All patients had exhausted pharmacological measures to limited effect. The initial three patients had tonic stimulation with the subsequent four having burst stimulation. Outcome was assessed using the numeric pain rating scale preoperatively and postoperatively at three and six months and one year. Side‐effects and complications were also assessed as well as reduction in analgesic medication use. Results All patients achieved pain reduction of at least 50% at 6 months (range 50–100%, mean 81%, p = 0.0082). Those in the burst stimulation group were paraesthesia free. One patient developed a postoperative infection for which the system had to be removed and is awaiting reimplantation. There were no other complications in either group. Conclusion Burst stimulation conferred similar pain control to tonic stimulation in our small cohort, and there were similar reductions in pain medication use. An additional benefit of burst stimulation is freedom from paraesthesia. Larger scale studies are needed to further evaluate burst stimulation and compare its efficacy with that of tonic stimulation.
Objective To quantify the relationship between the electrical power requirement to achieve pain relief and the position of the active electrode of dorsal root ganglion stimulators within the spinal nerve root exit foramen. Materials and Methods Retrospective analysis of prospectively collected data of 92 consecutive patients undergoing dorsal root ganglion stimulation (DRGS) for chronic pain in a single center. Cervical and sacral cases, and failed trials/explanted DRGS were excluded, so we report on 57 patients with 78 implanted leads. Anteroposterior and lateral fluoroscopic images of the lead in the exit foramen were examined, and the active electrode positions were put into categories depending on their location relative to fixed anatomical landmarks. The clinical outcome and the power requirements for each of these groups of electrodes were then analyzed. Overall pain outcome was assessed by numeric pain rating scale score pre‐operatively and post‐operatively. Results There was no significant relationship between power requirements and mediolateral electrode position, although the lowest average was observed with electrode positions directly below the center of the pedicle. On lateral x‐ray, the lowest power requirements were observed in the electrodes positioned superodorsally or dorsally within the foramen. Importantly, power requirements in this location were consistently low, while the power requirements in other locations were not only higher but also much more variable. Electrodes in the superodorsal position required a median output power almost four times lower than electrodes in other positions (p = 0.002). Clinical outcome was not significantly related to power requirement or foraminal position. Conclusion Aiming for a superodorsal electrode position on lateral intraoperative fluoroscopy is desirable, since siting leads in this location reduces the required stimulator output power very substantially and thus will extend battery life. Position within the foramen does not determine clinical outcome, and so the implanter can safely aim for the low power site without detriment to the analgesic efficacy of the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.