A comprehensive study of intelligent tools used to classify broken rotor bars in induction motors, which operate with three different types of frequency inverters, is presented. The diagnosis of defective rotor bars is a critical issue for the predictive maintenance of induction motors. A proper classification of these defects in their early stages of evolution is necessary for preventing major machine failures and production downtime. The proposed approach is performed by analysing the amplitude of the stator current signal in the time domain, using a dynamic acquisition rate based on machine frequency supply. To assess classification accuracy under the various severity levels of the faults, the performance of four different learning machine techniques is investigated: (i) fuzzy ARTMAP network; (ii) support vector machine (sequential minimal optimisation); (iii) k-nearest neighbour; and (iv) multilayer perceptron network. Results obtained from 1274 experimental tests are presented in order to validate the study, which considers a wide range of load conditions and operating frequencies. Experimental results presented in this study validate the robustness and efficacy of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.