Purpose: Micrometer spatial resolution dosimetry has become inevitable for advanced radiotherapy techniques. A new approach using radiochromic films was developed to measure a radiation dose at a micrometer spatial resolution by confocal Raman spectroscopy. Methods: The commercial radiochromic films (RCF), EBT3 and EBT-XD, were irradiated with known doses using 50, 100, 200, and 300 kVp, and 6-MV x rays. The dose levels ranged from 0.3 to 50 Gy. The Raman mapping technique developed in our early study was used to readout an area of 100 9 100 µm 2 on RCF with improved lateral and depth resolutions with confocal Raman spectrometry. The variation in Raman spectra of C-C-C deformation and CC stretching modes of diacetylene polymers around 676 and 2060 cm À1 , respectively, as a function of therapeutic x-ray doses, was measured. The single peak (SP) of CC and the peak ratio (PR) of CC band height to C-C-C band height with a spatial resolution of 10 µm on both types of RCF were evaluated, averaged, and plotted as a function of dose. An achievable spatial resolution, clinically useful dose range, dosimetric sensitivity, dose uniformity, and postirradiation stability as well as the orientation, energy, and dose rate dependence, of both types of RCFs, were characterized by the technique developed in this study. Results: A spatial resolution on RCF achieved by SP and PR methods was~4.5 and~2.9 µm, respectively. Raman spectroscopy data showed dose nonuniformity of~11% in SP method and <3% in PR method. The SP method provided dose ranges of up to~10 and~20 Gy for EBT3 and EBT-XD films, respectively while the PR method up to~30 and~50 Gy. The PR method diminished the orientation effect. The percent difference between landscape and portrait orientations for the EBT3 and the EBT-XD films at 4 Gy had an acceptable level of 1.2% and 2.4%, respectively. With both SP and PR methods, the EBT3 and the EBT-XD films showed weak energy (within~10% and~3% for SP and PR methods, respectively) and dose rate dependence (within~5% and~3% for SP and PR methods, respectively) and had a stable response after 24-h postirradiation. Conclusions: A technique for micrometer-resolution dosimetry was successfully developed by detecting radiation-induced Raman shift on EBT3 and EBT-XD. Both types of RCFs were suitable for micrometer-resolution dosimetry using CRS. With CRS both lateral and depth resolutions on RCF were improved. The PR method provided superior characteristics in dose uniformity, dose ranges, orientation dependence, and laser effect for both types of RCFs. The overall dosimetric characteristics of the RCFs determined by this technique were similar to those known by optical density 5238 scanning. The CRS with the PR method is advantageous over other the traditional scanning systems as a spatial resolution of <10 µm on RCF can be achieved with less deviations.
Purpose: To measure the radiosensitization by an Au-nanofilm (GNF) at a micrometer level on a radiochromic film (RCF) using confocal Raman spectroscopy (CRS). Methods: Unlaminated radiochromic films were irradiated by 200 kVp x-ray from 0.3 to 50 Gy to obtain a calibration curve. Raman spectra of these films were measured by positioning the postirradiated RCF perpendicular to the CRS monochromatic beam and reading a depth profile of the film along the lateral axis. The Raman peak corresponding to the C ≡ C peak was obtained from a region of interest of 100 × 5 µm 2. To investigate the radiosensitization by GNF, two sets of RCF, one attached to a 100-nm thick GNF and the other without GNF were irradiated at 0.5 Gy by 50 and 120 kVp X-rays. The spatial resolution of the CRS on the RCF was quantified by the modulation transfer function method (MTF). Thus, in the spatial resolution determined by MTF, the doses deposited on the films were evaluated. The dose enhancement factor (DEF) was obtained in the measurable micro-size by comparing doses deposited on the RCFs with and without GNF. To verify the experimental results, Monte Carlo simulations following the experimental set up were performed using Geant4. In addition, analytical calculations for the radiosensitization by GNF were carried out. Results: The confocal Raman spectroscopy on the RCF achieved a spatial resolution of~6 μm. An experimental DEF within the first 6 μm depth from the surface of RCF was found to be 17.9 for 50 kVp and 14.7 for 120 kVp. The DEF for the same depth obtained by MC and analytical calculations was 13.53 and 9.75 for 50 kVp, and 10.63 and 6.67 for 120 kVp, respectively. Conclusions: The experimental DEF as a function of the distance from GNF was consistent with data from previous studies and the MC simulations, supporting that CRS in conjunction with the RCF is a feasible micrometer-resolution dosimeter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.