Background Progress in extending the survival of glioblastoma (GBM) patients has been slow. A better understanding of why patient survival remains poor is critical to developing new strategies. Postmortem studies on GBM can shed light on why patients are dying. Methods The brains of 33 GBM patients were autopsied and examined for gross and microscopic abnormalities. Clinical-pathologic correlations were accomplished through detailed chart reviews. Data were compared with older published autopsy GBM studies that predated newer treatment strategies, such as more extensive surgical resection and adjuvant temozolomide. Results In older GBM autopsy series, mass effect was observed in 72% of brains, with herniation in 50% of all cases. Infiltration of tumor into the brainstem was noted in only 21% of those older cases. In the current series, only 10 of 33 (30%) GBMs showed mass effect (P = 0.0003), and only 1 (3%) showed herniation (P < 0.0001). However, extensive GBM infiltration of the brainstem was present in 22 cases (67%, P < 0.0001), with accompanying destruction of the pons and white matter tracts. There was a direct correlation between longer median patient survival and the presence of brainstem infiltration (16.1 mo in brainstem-invaded cases vs 9.0 mo in cases lacking extensive brainstem involvement; P = 0.0003). Conclusions With improving care, severe mass effect appears to be less common in GBM patients today, whereas dissemination, including life-threatening brainstem invasion, is now more pronounced. This has major implications regarding preclinical GBM models, as well as the design of clinical trials aimed at further improving patient survival.
A subset of gliomas has DNA repair defects that lead to hypermutated genomes. While such tumors are resistant to alkylating chemotherapies, they may also express more mutant neoantigens on their cell surfaces, and thus be more responsive to immunotherapies. A fast, inexpensive method of screening for hypermutated gliomas would therefore be of great clinical value. Since immunohistochemistry (IHC) for the DNA mismatch repair (MMR) proteins Msh2, Msh6, Mlh1, and Pms2 is already used to screen for hypermutated colorectal cancers, we sought to determine whether that panel might have similar utility in gliomas. MMR IHC was scored in 100 WHO grade I-IV gliomas (from 96 patients) with known tumor mutation burden (TMB), while blinded to TMB data. Cases included 70 grade IV GBMs, 13 grade III astrocytomas, 4 grade II astrocytomas (3 diffuse astrocytomas and 1 pleomorphic xanthoastrocytoma), 1 grade I pilocytic astrocytoma, 2 grade III oligodendrogliomas, 7 grade II oligodendrogliomas, and 3 grade I glioneuronal tumors. Eight of 100 tumors showed loss of one or more MMR proteins by IHC, and all 8 were hypermutated. Among the remaining 92 gliomas with intact MMR IHC, only one was hypermutated; that tumor had an inactivating mutation in another DNA repair gene, ATM. Overall accuracy, sensitivity, and specificity for DNA MMR IHC compared to the gold standard of TMB were 99, 89, and 100%, respectively. The strongest correlates with hypermutation were prior TMZ treatment, MGMT promoter methylation, and IDH1 mutation. Among the 8 MMR-deficient hypermutated gliomas, 4 (50%) contained both MMR-lost and MMR-retained tumor cells. Together, these data suggest that MMR IHC could be a viable front-line screening test for gliomas in which immunotherapy is being considered. They also suggest that not all cells in a hypermutated glioma may actually be MMR-deficient, a finding that might need to be considered when treating such tumors with immunotherapies.
Progress in prostate cancer racial disparity research has been hampered by a lack of appropriate research tools and better understanding of the tumor biology. Recent gene expression studies suggest that the tumor microenvironment (TME) may contribute to racially disparate clinical outcomes in prostate cancer. Analysis of the prostate TME has shown increased reactive stroma associated with chronic inflammatory infiltrates in African-American (AA) compared with European-American (EA) patients with prostate cancer. To better understand stromal drivers of changes in TME, we isolated prostate fibroblasts (PrF) from AA (PrF) and EA (PrF) prostate cancer tissues and studied their functional characteristics. PrF showed increased growth response to androgens FGF2 and platelet-derived growth factor. Compared with PrF, conditioned media from PrF significantly enhanced the proliferation and motility of prostate cancer cell lines. Expression of markers associated with myofibroblast activation (αSMA, vimentin, and tenascin-C) was elevated in PrF tumorigenicity of an AA patient-derived prostatic epithelial cell line E006AA was significantly increased in the presence of PrF compared with PrF, and RNA-seq data and cytokine array analysis identified a panel of potential proinflammatory paracrine mediators (BDNF, CHI3L1, DPPIV, FGF7, IL18BP, IL6, and VEGF) to be enriched in PrF E006AA cell lines showed increased responsiveness to BDNF ligand compared with EA-derived LNCaP and C4-2B cells. Addition of a TrkB-specific antagonist significantly reduced the protumorigenic effects induced by PrF compared with PrF These findings suggest that fibroblasts in the TME of AA patients may contribute to the health disparity observed in the incidence and progression of prostate cancer tumors. These findings suggest that stromal cells in the tumor microenvironment of African-American men promote progression of prostate cancer by increasing levels of a specific set of pro-inflammatory molecules compared with European-American men. http://cancerres.aacrjournals.org/content/canres/78/21/6134/F1.large.jpg .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.