We measured the prevalence of malaria in pregnancy and estimated its impact on birth weight and length and maternal hemoglobin in 1,180 women from Juruá Valley, the main malaria hotspot in Brazil. Antenatal malaria episodes, 74.6% of them due to , were microscopically diagnosed in 8.0% of the women and were associated with an average reduction in birth weight-scores of 0.35 (95% confidence interval [CI] = 0.14-0.57) and in birth length -scores of 0.31 (95% CI = 0.08-0.54), compared with malaria-free pregnancies. Affected mothers had a mean decrease in hemoglobin concentration at delivery of 0.33 g/100 mL (95% CI = 0.05-0.62 g/100 mL); 51.6% were anemic. The timing and frequency of antenatal infections influenced pregnancy outcomes and first- or second-trimester infections were not associated with decreased birth weight and length and maternal hemoglobin at delivery. Although repeated antenatal vivax infections were associated with poorer birth outcomes, even a single vivax malaria episode was associated with a significant reduction in birth weight and length and maternal hemoglobin. Overall, 7.5% women had the parasite's DNA found in peripheral blood at delivery. Most (83.1%) of these 89 perinatal infections were due to and only 7.9% of them progressed to symptomatic disease after delivery. and DNA was found in 0.6% and 0.3% of 637 cord blood samples examined, respectively, but only one newborn developed clinical neonatal malaria. Our results further challenge the notion that vivax malaria is relatively benign during pregnancy and call for better strategies for its prevention.
Emerging antimalarial drug resistance may undermine current efforts to control and eliminate Plasmodium vivax , the most geographically widespread yet neglected human malaria parasite. Endemic countries are expected to assess regularly the therapeutic efficacy of antimalarial drugs in use in order to adjust their malaria treatment policies, but proper funding and trained human resources are often lacking to execute relatively complex and expensive clinical studies, ideally complemented by ex vivo assays of drug resistance. Here we review the challenges for assessing in vivo P. vivax responses to commonly used antimalarials, especially chloroquine and primaquine, in the presence of confounding factors such as variable drug absorption, metabolism and interaction, and the risk of new infections following successful radical cure. We introduce a simple modeling approach to quantify the relative contribution of relapses and new infections to recurring parasitemias in clinical studies of hypnozoitocides. Finally, we examine recent methodological advances that may render ex vivo assays more practical and widely used to confirm P. vivax drug resistance phenotypes in endemic settings and review current approaches to the development of robust genetic markers for monitoring chloroquine resistance in P. vivax populations.
The overall malaria burden in the Americas has decreased dramatically over the past two decades, but residual transmission pockets persist across the Amazon Basin, where Plasmodium vivax is the predominant infecting species. Current elimination efforts require a better quantitative understanding of malaria transmission dynamics for planning, monitoring, and evaluating interventions at the community level. This can be achieved with mathematical models that properly account for risk heterogeneity in communities approaching elimination, where few individuals disproportionately contribute to overall malaria prevalence, morbidity, and onwards transmission. Here we analyse demographic information combined with routinely collected malaria morbidity data from the town of Mâ ncio Lima, the main urban transmission hotspot of Brazil. We estimate the proportion of high-risk subjects in the host population by fitting compartmental susceptible-infected-susceptible (SIS) transmission models simultaneously to age-stratified vivax malaria incidence densities and the frequency distribution of P. vivax malaria attacks experienced by each individual over 12 months. Simulations with the best-fitting SIS model indicate that 20% of the hosts contribute 86% of the overall vivax malaria burden. Despite the low overall force of infection typically found in the Amazon, about one order of magnitude lower than that in rural Africa, high-risk individuals gradually develop clinical immunity following repeated infections and eventually constitute a substantial infectious reservoir comprised of asymptomatic parasite carriers that is overlooked by routine surveillance but likely fuels onwards malaria transmission. High-risk individuals therefore represent a priority target for more intensive and effective interventions that may not be readily delivered to the entire community.
Proposed genetic approaches for reducing human malaria include population modification, which introduces genes into vector mosquitoes to reduce or prevent parasite transmission. We demonstrate the potential of Cas9/guide RNA (gRNA)–based gene-drive systems linked to dual antiparasite effector genes to spread rapidly through mosquito populations. Two strains have an autonomous gene-drive system coupled to dual anti- Plasmodium falciparum effector genes comprising single-chain variable fragment monoclonal antibodies targeting parasite ookinetes and sporozoites in the African malaria mosquitoes Anopheles gambiae (AgTP13) and Anopheles coluzzii (AcTP13). The gene-drive systems achieved full introduction within 3 to 6 mo after release in small cage trials. Life-table analyses revealed no fitness loads affecting AcTP13 gene-drive dynamics but AgTP13 males were less competitive than wild types. The effector molecules reduced significantly both parasite prevalence and infection intensities. These data supported transmission modeling of conceptual field releases in an island setting that shows meaningful epidemiological impacts at different sporozoite threshold levels (2.5 to 10 k) for human infection by reducing malaria incidence in optimal simulations by 50 to 90% within as few as 1 to 2 mo after a series of releases, and by ≥90% within 3 mo. Modeling outcomes for low sporozoite thresholds are sensitive to gene-drive system fitness loads, gametocytemia infection intensities during parasite challenges, and the formation of potentially drive-resistant genome target sites, extending the predicted times to achieve reduced incidence. TP13-based strains could be effective for malaria control strategies following validation of sporozoite transmission threshold numbers and testing field-derived parasite strains. These or similar strains are viable candidates for future field trials in a malaria-endemic region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.