We examine the full nonlinear dynamics of closed FRW universes in the framework of D-branes formalism. Friedmann equations contain additional terms arising from the bulk-brane interaction that provide a concrete model for nonsingular bounces in the early phase of the universe. We construct nonsingular cosmological scenarios sourced with perfect fluids and a massive inflaton field which are past eternal, oscillory and may emerge into an inflationary phase due to nonlinear resonance mechanisms. Oscillatory behaviour becomes metastable when the system is driven into a resonance window of the parameter space of the models, with consequent break-up of KAM tori that trap the inflaton, leading the universe to the inflationary regime. A construction of the resonance chart of the models is made. Resonance windows are labeled by an integer n ≥ 2, where n is related to the ratio of the frequencies in the scale factor/scalar field degrees of freedom. They are typically small compared to volume of the whole parameter space, and we examine the constraints imposed by nonlinear resonance in the physical domain of initial configurations so that inflation may be realized. We discuss the complex dynamics arising in this pre-inflationary stage, the structural stability of the resonance pattern and some of its possible imprints in the physics of inflation. We also approach the issue of initial configurations that are connected to a chaotic exit to inflation. Pure scalar field bouncing cosmologies are constructed. Contrary to models with perfect fluid components, the structure of the bouncing dynamics is highly sensitive to the initial amplitude and to the mass of the inflaton; dynamical potential barriers allowing for bounces appear as a new feature of the dynamics. We argue that if our actual Universe is a brane inflated by a parametric resonance mechanism triggered by the inflaton, some observable cosmological parameters should then have a signature of the particular resonance from which the brane inflated.
We examine the nonlinear dynamics of a closed Friedmann-Robertson-Walker universe in the framework of Brane World formalism with a timelike extra dimension. In this scenario, the Friedmann equations contain additional terms arising from the bulk-brane interaction which provide a concrete model for nonsingular bounces in the early phase of the Universe. We construct a nonsingular cosmological scenario sourced with dust, radiation and a cosmological constant. The structure of the phase space shows a nonsingular orbit with two accelerated phases, separated by a smooth transition corresponding to a decelerated expansion. Given observational parameters we connect such phases to a primordial accelerated phase, a soft transition to Friedmann (where the classical regime is valid), and a graceful exit to a de Sitter accelerated phase.
Bouncing models have been proposed by many authors as a completion, or even as an alternative to inflation for the description of the very early and dense Universe. However, most bouncing models contain a contracting phase from a very large and rarefied state, where dark energy might have had an important role as it has today in accelerating our large Universe. In that case, its presence can modify the initial conditions and evolution of cosmological perturbations, changing the known results already obtained in the literature concerning their amplitude and spectrum. In this paper, we assume the simplest and most appealing candidate for dark energy, the cosmological constant, and evaluate its influence on the evolution of cosmological perturbations during the contracting phase of a bouncing model, which also contains a scalar field with a potential allowing background solutions with pressure and energy density satisfying p = w*rho, w being a constant. An initial adiabatic vacuum state can be set at the end of domination by the cosmological constant, and an almost scale invariant spectrum of perturbations is obtained for w~0, which is the usual result for bouncing models. However, the presence of the cosmological constant induces oscillations and a running towards a tiny red-tilted spectrum for long wavelength perturbations.Comment: 11 pages, 11 figure
We carefully investigate the modified Einstein's field equation in a 4-dimensional (3-brane) arbitrary manifold embedded in a 5-dimensional non-Riemannian bulk spacetime with a noncompact extra dimension. In this context the Israel-Darmois matching conditions are extended assuming that the torsion in the bulk is continuous. The discontinuity in the torsion first derivatives are related to the matter distribution through the field equation. In addition, we develop a model that describes a flat FLRW model embedded in a 5-dimensional de Sitter or anti-de Sitter, where a 5-dimensional cosmological constant emerges from the torsion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.