La Herradura mine in Sonora is one of the most important gold districts in Mexico producing more than 5.5 million ounces of gold over 17 years. It is part of an orogenic gold deposits belt with a northwest-southeast direction for 300 km long and 50 km wide. The mineralization consists of veins and quartz networks veinlets formed in a brittle-ductil geologic environment and it is hosted in Proterozoic quartz-feldspar gneisses. The ore bodies, defined by a 0.3 g/t Au cutoff grade, have tabular forms up to 1 km in length, 1 km in depth and 100 m in width. The visual control for mineralization is the abundance of quartz veins and veinlets, and a persistent sericitic hydrothermal alteration. Different techniques were used in this work with special focus on the Mineral Liberation Analizer (MLA) program to prove the possibility of predicting recoverable gold in the mine for the primary sulphide zone. Three geometallurgical zones (Zones A, B and C) were defined by ore composites and gravimetric concentrates from the same composites. Modal composition of the concentrates is quartz, feldspar and muscovite (sericite), and a metallic mineralogy of pyrite, sphalerite, galena, magnetite, gold and tellurides of gold and silver. Gold is identified as inclusions in pyrite or in gangue minerals like quartz, albite, orthoclase or ankerite, as well as coating pyrite crystals. The gold composition is electrum with 74% Au and 26% Ag; the presence of petzite (Ag 3 AuTe 2) and stutzite (AgTe) were also identified. Recovery constants were calculated for each geometallurgical zone, which were introduced to the resource model of more than 14 million ounces of gold, indicating that error range in recoverable gold is less than 4% for Zone A, 6% for Zone C and 13% for Zone B, in relation with gold recovery calculated with traditional methods. These results could be acceptable to applicate this methodology to La Herradura deposit. The most important error range in the Zone B is interpreted as due to a nugget effect, which is very common in such mineral deposits. It is also concluded that the secondary milling process currently incorporated to the metallurgical plant is probably unnecessary, so its removal would result in a significant saving in energy and therefore in the economy of the mine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.