To identify differentially expressed genes in soybean grown under different drought conditions, cDNA libraries from roots of different genotypes were constructed. Genes of contrasting genotypes of soybean were found to be differentially expressed in plants exposed to drought conditions. A total of 753 no redundant clones were identified by PCR, and these were printed on microarray glass slides. Probes of total RNA were prepared from bulked roots subjected to 25 and 50 min (Bulk 1) or 75 and 100 min (Bulk 2) of drought stress. Differential expression of 145 genes, involved in metabolic pathways responsive to biotic and abiotic stresses, was observed. These genes were classified into nine functional categories, including energy, transcription factors, metabolism, stress response, protein synthesis, cell communication, cell cycle, cell transport, and unknown function. The functionality of some of these genes was confirmed by quantitative real-time PCR (qRT-PCR).
We report the microbiological characterization of four New Delhi
metallo-β-lactamase-1 (bla
NDM-1)-producing Enterobacteriaceae isolated in Rio de
Janeiro, Brazil. bla
NDM-1 was located on a conjugative plasmid and was associated with
Klebsiella pneumoniae carbapenemase-2 (bla
KPC-2) or aminoglycoside-resistance methylase (armA), a
16S rRNA methylase not previously reported in Brazil, in two distinct strains of
Enterobacter cloacae. Our results suggested that the introduction
of bla
NDM-1 in Brazil has been accompanied by rapid spread, since our isolates
showed no genetic relationship.
Until recently, few studies were carried out in Brazil about diversity of bacterial soil communities. Aiming to characterize the bacterial population in the soil through 16S rRNA analysis, two types of soil have been analyzed: one of them characterized by intensive use where tomato, beans and corn were cultivated (CS); the other analyzed soil was under forest (FS), unchanged by man; both located in Guaíra, São Paulo State, Brazil. Using specific primers, 16S rRNA genes from metagenomic DNA in both soils were amplified by PCR, amplicons were cloned and 139 clones from two libraries were partially sequenced. The use of 16S rRNA analysis allowed identification of several bacterial populations in the soil belonging to the following phyla: Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria Verrucomicrobia in addition to the others that were not classified, beyond Archaea domain. Differences between FS and CS libraries were observed in size phyla. A larger number of phyla and, consequently, a greater bacterial diversity were found in the under-forest soil. These data were confirmed by the analyses of genetic diversity that have been carried out. The characterization of bacterial communities of soil has made its contribution by providing facts for further studies on the dynamics of bacterial populations in different soil conditions in Brazil.
Studies on the impact of Eucalyptus spp. on Brazilian soils have focused on soil chemical properties and isolating interesting microbial organisms. Few studies have focused on microbial diversity and ecology in Brazil due to limited coverage of traditional cultivation and isolation methods. Molecular microbial ecology methods based on PCR amplified 16S rDNA have enriched the knowledge of soils microbial biodiversity. The objective of this work was to compare and estimate the bacterial diversity of sympatric communities within soils from two areas, a native forest (NFA) and an eucalyptus arboretum (EAA). PCR primers, whose target soil metagenomic 16S rDNA were used to amplify soil DNA, were cloned using pGEM-T and sequenced to determine bacterial diversity. From the NFA soil 134 clones were analyzed, while 116 clones were analyzed from the EAA soil samples. The sequences were compared with those online at the GenBank. Phylogenetic analyses revealed differences between the soil types and high diversity in both communities. Soil from the Eucalyptus spp. arboretum was found to have a greater bacterial diversity than the soil investigated from the native forest area.
when exposed to aluminum. An extensive annotation of the differentially expressed genes (DEGs), made possible to identify several transcripts with putative functions correlated to aluminum exposure, most belonging to vesicle transportation, cell wall modifications and metal handling ontologies. In this work, abundant, high-quality transcripts were obtained, providing a reference platform for future biotechnological studies and breeding programs for this species and its close relatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.