In recent years, there has been a surge in the development of methods for cell segmentation and tracking, with initiatives such as the Cell Tracking Challenge driving progress in the field. Most studies focus on regular cell population videos in which cells are segmented, cell tracks followed, and parental relationships annotated. However, DNA damage induced by genotoxic drugs or ionizing radiation provide additional abnormal cellular events of interest since they lead to aberrant behaviors such as abnormal cell divisions (i.e., resulting in a number of daughter cells different from two) and cell death. The dynamic development of those abnormal events can be followed using time lapse microscopy to be further analyzed. With this in mind, we developed an automatic mitosis classifier that categorizes small mitosis image sequences centered around a single cell as 'Normal' or 'Abnormal'. These mitosis sequences were extracted from videos of cell populations exposed to varying levels of radiation that affect the cell cycle's development. Such an approach can aid in detecting, tracking, and characterizing the behavior of the entire population. In this study, we explored several deep-learning architectures for working with 12-frame mitosis sequences. We found that a network with a ResNet50 backbone, modified to operate independently on each video frame and then combined using a Long Short-Term Memory (LSTM) layer, produced the best results in the classification (mean F1-score: 0.93 +/- 0.06). In future work, we plan to integrate the mitosis classifier in a cell segmentation and tracking pipeline to build phylogenetic trees of the entire cell population after genomic stress.
Actualmente, las capacidades de interacción de los robots sociales son limitadas y, después de un tiempo de convivencia, los diálogos que pueden mantener son percibidos como predecibles, repetitivos y poco naturales. Esto puede llevar a una pérdida de interés de la persona en el robot. Si se quiere apostar por una convivencia exitosa y larga, es necesario dotar los robots de discursos más variados y que se adapten fácilmente a los cambios de necesidades que pueda haber en los usuarios. En esta contribución se propone una metodología que combina técnicas de minería de datos y de aprendizaje automático para, mediante el contenido publicado en las redes sociales, definir la comunicación verbal del robot de una forma dinámica. Se propone extraer información útil de las redes sociales para construir modelos de conocimiento basados en temas que son de interés para el usuario y en el contexto de la interacción con el robot. Además, se plantea mantener el modelo actualizado de acuerdo con la nueva información que se publique o cambios que pudieran ocurrir desde un punto de vista del usuario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.