Gait analysis has been widely studied by researchers due to the impact in clinical fields. It provides relevant information on the condition of a patient’s pathologies. In the last decades, different gait measurement methods have been developed in order to identify parameters that can contribute to gait cycles. Analyzing those parameters, it is possible to segment and identify different phases of gait cycles, making these studies easier and more accurate. This paper proposes a simple gait segmentation method based on plantar pressure measurement. Current methods used by researchers and clinicians are based on multiple sensing devices (e.g., multiple cameras, multiple inertial measurement units (IMUs)). Our proposal uses plantar pressure information from only two sensorized insoles that were designed and implemented with eight custom-made flexible capacitive sensors. An algorithm was implemented to calculate gait parameters and segment gait cycle phases and subphases. Functional tests were performed in six healthy volunteers in a 10 m walking test. The designed in-shoe insole presented an average power consumption of 44 mA under operation. The system segmented the gait phases and sub-phases in all subjects. The calculated percentile distribution between stance phase time and swing phase time was almost 60%/40%, which is aligned with literature reports on healthy subjects. Our results show that the system achieves a successful segmentation of gait phases and subphases, is capable of reporting COP velocity, double support time, cadence, stance phase time percentage, swing phase time percentage, and double support time percentage. The proposed system allows for the simplification of the assessment method in the recovery process for both patients and clinicians.
Background Diaphragm muscle atrophy during mechanical ventilation begins within 24 h and progresses rapidly with significant clinical consequences. Electrical stimulation of the phrenic nerves using invasive electrodes has shown promise in maintaining diaphragm condition by inducing intermittent diaphragm muscle contraction. However, the widespread application of these methods may be limited by their risks as well as the technical and environmental requirements of placement and care. Non‐invasive stimulation would offer a valuable alternative method to maintain diaphragm health while overcoming these limitations. Methods We applied non‐invasive electrical stimulation to the phrenic nerve in the neck in healthy volunteers. Respiratory pressure and flow, diaphragm electromyography and mechanomyography, and ultrasound visualization were used to assess the diaphragmatic response to stimulation. The electrode positions and stimulation parameters were systematically varied in order to investigate the influence of these parameters on the ability to induce diaphragm contraction with non‐invasive stimulation. Results We demonstrate that non‐invasive capture of the phrenic nerve is feasible using surface electrodes without the application of pressure, and characterize the stimulation parameters required to achieve therapeutic diaphragm contractions in healthy volunteers. We show that an optimal electrode position for phrenic nerve capture can be identified and that this position does not vary as head orientation is changed. The stimulation parameters required to produce a diaphragm response at this site are characterized and we show that burst stimulation above the activation threshold reliably produces diaphragm contractions sufficient to drive an inspired volume of over 600 ml, indicating the ability to produce significant diaphragmatic work using non‐invasive stimulation. Conclusion This opens the possibility of non‐invasive systems, requiring minimal specialist skills to set up, for maintaining diaphragm function in the intensive care setting.
Abstract. A critical aspect of predicting soil organic carbon (SOC) concentrations is the lack of available soil information; where information on soil characteristics is available, it is usually focused on regions of high agricultural interest. To date, in Chile, a large proportion of the SOC data have been collected in areas of intensive agricultural or forestry use; however, vast areas beyond these forms of land use have few or no soil data available. Here we present a new SOC database for the country, which is the result of an unprecedented national effort under the framework of the Global Soil Partnership. This partnership has helped build the largest database of SOC to date in Chile, named the Chilean Soil Organic Carbon database (CHLSOC), comprising 13 612 data points compiled from numerous sources, including unpublished and difficult-to-access data. The database will allow users to fill spatial gaps where no SOC estimates were publicly available previously. Presented values of SOC range from 6×10-5 % to 83.3 %, reflecting the variety of ecosystems that exist in Chile. The database has the potential to inform and test current models that predict SOC stocks and dynamics at larger spatial scales, thus enabling benefits from the richness of geochemical, topographic and climatic variability in Chile. The database is freely available to registered users at https://doi.org/10.17605/OSF.IO/NMYS3 (Pfeiffer et al., 2019b) under the Creative Commons Attribution 4.0 International Public License.
Abstract. One of the critical aspects in modelling soil organic carbon (SOC) predictions is the lack of access to soil information which is usually concentrated in regions of high agricultural interest. In Chile, most soil and SOC data to date is highly concentrated in 25 % of the territory that has intensive agricultural or forestry use. Vast areas beyond those forms of land use have few or no soil data available. Here, we present a new database of SOC for the country, which is the result of an unprecedented national effort under the frame of the Global Soil Partnership that help to build the largest database on SOC to date in Chile named “CHLSOC" comprising 13,612 data points. This dataset is the product of the compilation from numerous sources including unpublished and difficult to access data, allowing to fill numerous spatial gaps where no SOC estimates were publicly available before. The values of SOC compiled in CHLSOC range from 6×10−5 to 83.3 percent, reflecting the variety of ecosystems that exists in Chile. Profiting from the richness of geochemical, topographic and climatic variability in Chile, the dataset has the potential to inform and test models trying to predict SOC stocks and dynamics at larger spatial scales. Dataset available at https://www.doi.org/10.17605/OSF.IO/NMYS3 (Pfeiffer et al., 2019b).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.