Abstract-To simplify the usage of the Unmanned Aerial Systems (UAS), extending their use to a great number of applications, fully autonomous operation is needed. There are many open-source architecture frameworks for UAS that claim the autonomous operation of UAS, but they still have two main open issues: (1) level of autonomy, being in most of the cases limited and (2) versatility, being most of them designed specifically for some applications or aerial platforms.As a response to these needs and issues, this paper presents Aerostack, a system architecture and open-source multi-purpose software framework for autonomous multi-UAS operation. To provide higher degrees of autonomy, Aerostack's system architecture integrates state of the art concepts of intelligent, cognitive and social robotics, based on five layers: reactive, executive, deliberative, reflective, and social. To be a highly versatile practical solution, Aerostack's open-source software framework includes the main components to execute the architecture for fully autonomous missions of swarms of UAS; a collection of ready-to-use and flight proven modular components that can be reused by the users and developers; and compatibility with five well known aerial platforms, as well as a high number of sensors.Aerostack has been validated during three years by its successful use on many research projects, international competitions and exhibitions. To corroborate this fact, this paper also presents Aerostack carrying out a fictional fully autonomous indoors search and rescue mission.
Personal drones are becoming part of every day life. To fully integrate them into society, it is crucial to design safe and intuitive ways to interact with these aerial systems. The recent advances on User-Centered Design (UCD) applied to Natural User Interfaces (NUIs) intend to make use of human innate features, such as speech, gestures and vision to interact with technology in the way humans would with one another. In this paper, a Graphical User Interface (GUI) and several NUI methods are studied and implemented, along with computer vision techniques, in a single software framework for aerial robotics called Aerostack which allows for intuitive and natural human-quadrotor interaction in indoor GPS-denied environments. These strategies include speech, body position, hand gesture and visual marker interactions used to directly command tasks to the drone. The NUIs presented are based on devices like the Leap Motion Controller, microphones and small size monocular on-board cameras which are unnoticeable to the user. Thanks to this UCD perspective, the users can choose the most intuitive and effective type of interaction for their application. Additionally, the strategies proposed allow for multi-modal interaction between multiple users and the drone by being able to integrate several of these interfaces in one single application as is shown in various real flight experiments performed with non-expert users.
Abstract-In this paper a scalable and flexible Architecture for real-time mission planning and dynamic agent-to-task assignment for a swarm of Unmanned Aerial Vehicles (UAV) is presented. The proposed mission planning architecture consists of a Global Mission Planner (GMP) which is responsible of assigning and monitoring different high-level missions through an Agent Mission Planner (AMP), which is in charge of providing and monitoring each task of the mission to each UAV in the swarm. The objective of the proposed architecture is to carry out high-level missions such as autonomous multiagent exploration, automatic target detection and recognition, search and rescue, and other different missions with the ability of dynamically re-adapt the mission in real-time. The proposed architecture has been evaluated in simulation and real indoor flights demonstrating its robustness in different scenarios and its flexibility for real-time mission re-planning and dynamic agent-to-task assignment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.