Still to this day, academic credentials are primarily paper-based, and the process to verify the authenticity of such documents is costly, time-consuming, and prone to human error and fraud. Digitally signed documents facilitate a cost-effective verification process. However, vulnerability to fraud remains due to reliance on centralized authorities that lack full transparency.In this paper, we present the mechanisms we designed to create secure and machine-verifiable academic credentials. Our protocol models a diploma as an evolving set of immutable credentials. The credentials are built as a tree-based data structure with linked time-stamping, where portions of credentials are distributed over a set of smart contracts. Our design prevents fraud of diplomas and eases the detection of degree mills, while increasing the transparency and trust in the issuer's procedures.Our evaluation shows that our solution offers a certification system with strong cryptographic security and imposes a high level of transparency of the certification process. We achieve these benefits with acceptable costs compared to existing solutions that lack such transparency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.