This work presents an alternative finite element shell formulation based on non-conventional nodal parameters. The considered parameters are nodal positions (not displacements) and generalized vector components that comprise both director cossines and shell thickness variation at the same time. Although any objective strain measure could be adopted to develop the proposed formulation, non-linear engineering strain is chosen in order to take advantage of well know linear engineering stress-strain relations and to complement the easy geometrical appeal of positional formulation. The resulting formulation presents six degrees of freedom by each node and considers constant thickness variation. Consequently, the formulation fulfills a three dimensional compatible mapping and requires a relaxed three-dimensional constitutive relation to avoid thickness locking. Curved triangular elements with cubic approximation are adopted following a very simple notation. Several numerical simulations illustrate and confirm the accuracy and applicability of the proposed formulation.
SUMMARYThis communication proposes a simple way to introduce fibers into finite element modelling. This is a promising formulation to deal with fiber-reinforced composites by the finite element method (FEM), as it allows the consideration of short or long fibers placed arbitrarily inside a continuum domain (matrix). The most important feature of the formulation is that no additional degree of freedom is introduced into the pre-existent finite element numerical system to consider any distribution of fiber inclusions. In other words, the size of the system of equations used to solve a non-reinforced medium is the same as the one used to solve the reinforced counterpart. Another important characteristic is the reduced work required by the user to introduce fibers, avoiding 'rebar' elements, node-by-node geometrical definitions or even complex mesh generation. An additional characteristic of the technique is the possibility of representing unbounded stresses at the end of fibers using a finite number of degrees of freedom. Further studies are required for non-linear applications in which localization may occur. Along the text the linear formulation is presented and the bounded connection between fibers and continuum is considered. Four examples are presented, including non-linear analysis, to validate and show the capabilities of the formulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.