Aedes aegypti larvae have developed tolerance to many insecticides used for mosquito control. Moringa oleifera seeds contain a water-soluble lectin (WSMoL) and this paper reports the effect of M. oleifera seed extracts (MoE(1-15)) and WSMoL on development and survival of A. aegypti larvae. WSMoL peptide from in-gel trypsin digestion is also described. MoE(1-15) showed hemagglutinating activity and WSMoL had similarity with flocculating proteins from M. oleifera seeds. MoE(1) and MoE(3) delayed larval development which stopped in the third instar (L3) in MoE(6) and MoE(15). Significant (p<0.0001) larval mortality was only detected in MoE(15). Native WSMoL showed larvicidal activity (LC(50) 0.197 mg mL(-1)) and heated lectin, without hemagglutinating activity, did not kill fourth instar (L4) larvae. Optical microscopy showed that live L4 from MoE(1) presented underlying epithelium, increased gut lumen and hypertrophic segments; dead L4 from WSMoL were absent of underlying epithelium, had increased gut lumen and hypertrophic segments. The presence of hemagglutinating activity in the extracts suggests that soluble lectin promotes the delay of larval development and mortality; furthermore, the absence of larvicidal activity in heat-denatured WSMoL strengthens the involvement of lectin in this activity mechanism.
Abstract. We study the relationship between Concurrent Separation Logic (CSL) and the assume-guarantee (A-G) method (a.k.a. rely-guarantee method). We show in three steps that CSL can be treated as a specialization of the A-G method for well-synchronized concurrent programs. First, we present an A-G based program logic for a low-level language with built-in locking primitives. Then we extend the program logic with explicit separation of "private data" and "shared data", which provides better memory modularity. Finally, we show that CSL (adapted for the low-level language) can be viewed as a specialization of the extended A-G logic by enforcing the invariant that "shared resources are well-formed outside of critical regions". This work can also be viewed as a different approach (from Brookes') to proving the soundness of CSL: our CSL inference rules are proved as lemmas in the A-G based logic, whose soundness is established following the syntactic approach to proving soundness of type systems.
Synthetic ultrasmall nanoparticles (NPs) can be designed to interact with biologically active proteins in a controlled manner. However, the rational design of NPs requires a clear understanding of their interactions with proteins and the precise molecular mechanisms that lead to association/dissociation in biological media. Although much effort has been devoted to the study of the kinetics mechanism of protein corona formation on large NPs, the nature of NP-protein interactions in the ultrasmall regime is radically different and poorly understood. Using a combination of experimental and computational approaches, we studied the interactions of a model protein, CrataBL, with ultrasmall gold NPs passivated with p-mercaptobenzoic acid (AuMBA) and glutathione (AuGSH). We have identified this system as an ideal in vitro platform to understand the dependence of binding affinity and kinetics on NP surface chemistry. We found that the structural and chemical complexity of the passivating NP layer leads to quite different association kinetics, from slow and reaction-limited (AuGSH) to fast and diffusion-limited (AuMBA). We also found that the otherwise weak and slow AuGSH-protein interactions measured in buffer solution are enhanced in macromolecular crowded solutions. These findings advance our mechanistic understanding of biomimetic NP-protein interactions in the ultrasmall regime and have implications for the design and use of NPs in the crowded conditions common to all biological media.
Aims: The aim of this work was to analyse the coagulant and antibacterial activities of lectin isolated from Moringa oleifera seeds that are used for water treatment. Methods and Results: The water‐soluble M. oleifera lectin (WSMoL) was separated from nonhemagglutinating components (NHC) by chitin chromatography. WSMoL fluorescence spectrum was not altered in the presence of ions that are often present in high concentrations in polluted waters. Seed extract, NHC and WSMoL showed coagulant activity on a turbid water model. Both NHC and WSMoL reduced the growth of Staphylococcus aureus, but only WSMoL caused a reduction in Escherichia coli. WSMoL was also more effective in reducing the growth of ambient lake water bacteria. Conclusions: Data obtained from this study indicate that WSMoL is a potential natural biocoagulant for water, reducing turbidity, suspended solids and bacteria. Significance and Impact of the Study: Moringa oleifera seeds are a material effective in the treatment of water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.