Thanks to the development of new, more potent and selective immunosuppressive drugs together with advances in surgical techniques, organ transplantation has emerged from an experimental surgery over fifty years ago to being the treatment of choice for many end-stage organ diseases, with over 139,000 organ transplants performed worldwide in 2019. Inherent to the transplantation procedure is the fact that the donor organ is subjected to blood flow cessation and ischemia during harvesting, which is followed by preservation and reperfusion of the organ once transplanted into the recipient. Consequently, ischemia/reperfusion induces a significant injury to the graft with activation of the immune response in the recipient and deleterious effect on the graft. The purpose of this review is to discuss and shed new light on the pathways involved in ischemia/reperfusion injury (IRI) that act at different stages during the donation process, surgery, and immediate post-transplant period. Here, we present strategies that combine various treatments targeted at different mechanistic pathways during several time points to prevent graft loss secondary to the inflammation caused by IRI.
The rapid development of mRNA-based vaccines against the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) led to the design of accelerated vaccination schedules that have been extremely effective in naïve individuals. While a two-dose immunization regimen with the BNT162b2 vaccine has been demonstrated to provide a 95% efficacy in naïve individuals, the effects of the second vaccine dose in individuals who have previously recovered from natural SARS-CoV-2 infection has not been investigated in detail. Here we characterize, SARS-CoV-2 spike-specific humoral and cellular immunity in naïve and previously infected individuals during and after two-doses of BNT162b2 vaccination. Our results demonstrate that, while the second dose increases both the humoral and cellular immunity in naïve individuals, COVID-19 recovered individuals reach their peak of immunity after the first dose. These results suggests that a second dose, according to the current standard regimen of vaccination, may be not necessary in individuals previously infected with SARS-CoV-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.