O mapeamento digital de solos (MDS) tem como base a geração de sistemas de informações que permitem estabelecer relações matemáticas entre variáveis ambientais e solos e, dessa forma, predizer a distribuição espacial das classes ou propriedades dos solos. Dentre as abordagens mais utilizadas, as árvores de decisão têm se destacado por apresentar bons resultados no MDS. Por outro lado, dada a disponibilidade de novas fontes de informação sobre a elevação, torna-se necessário o teste e avaliação de modelos digitais de elevação (MDE) quanto ao seu uso para o MDS. Este estudo testa cinco algoritmos de árvores de decisão (Simple Chart, Random Tree, REP Tree, BF Tree e J48) e três MDE (Aster GDEM, SRTM e SRTM V3) para o MDS a nível semidetalhado, em situações em que o principal fator diferenciador entre os tipos de solo é o relevo. O uso do MDE Aster GDEM e árvore de decisão com algoritmo J48, Simple Tree e BF Tree foram os que produziram modelos de árvore de decisão capazes de produzir mapas de solo com maior similaridade ao mapa de referência.
Os modelos digitais de elevação (MDEs) são fontes fundamentais para correlacionar a ocorrência e distribuição de solos com a paisagem pelo mapeamento digital de solos (MDS). A influência dos tipos e das resoluções dos MDEs na capacidade de predição dos modelos preditores de classes de solo ainda é pouco estudada. Neste estudo, foram avaliados e comparados os efeitos de diferentes MDEs na predição de ocorrência de unidades de mapeamento de solo (UM). Foram correlacionados 12 atributos do terreno derivados de diferentes MDEs com a ocorrência de UM. Os MDEs utilizados foram os oriundos dos projetos SRTM v4.1, ASTER GDEM v2, TOPODATA e Brasil em Relevo, e os MDEs gerados a partir de curvas de nível na escala de 1:50.000, com resoluções de 30 e 90 m. Os modelos preditores foram treinados por árvore de decisão (Simple Cart) com dados amostrados em 4.280 pontos aleatórios contendo informações dos solos extraídos de um mapa convencional de solos na escala 1:20.000 e 12 atributos do terreno derivados de seis MDEs com tamanhos de pixel de 30 e 90 m. A validação dos modelos preditores de UM foi realizada com a totalidade dos dados da área. Os atributos do terreno que melhor explicaram a ocorrência das UM foram elevação, declividade, comprimento de fluxo e orientação das vertentes. Os MDEs com tamanho de pixel de 30 m geraram correlações solo-paisagem menos acuradas. Os modelos preditores mais acurados e com maior número de UM estimadas foram os gerados a partir dos MDEs com resolução espacial de 90 m (SRTM v4.1 e CN90), sendo esses os MDEs mais indicados para o MDS, quando predominarem relevos plano e suave ondulado.
reSUmo para estudar técnicas de amostragem, úteis ao mapeamento digital de solos (mdS), objetivou-se avaliar o efeito da variação da densidade de pontos amostrais com base em dados de áreas já mapeadas por métodos tradicionais na acurácia dos modelos de árvores de decisão (AD) para a geração de mapas de solos por MDS. Em duas bacias hidrográficas no noroeste do rio grande do Sul, usou-se, como referência, antigos mapas convencionais de solos na escala 1:50.000. A partir do modelo digital de elevação do terreno e da rede hidrográfica, foram gerados mapas das variáveis preditoras: elevação, declividade, curvatura, comprimento de fluxo, acúmulo de fluxo, índice de umidade topográfica e distância euclideana de rios. A escolha dos locais dos pontos amostrais foi aleatória e testaram-se densidades amostrais que variaram de 0,1 a 4 pontos/ha. o treinamento dos modelos foi realizado no software Weka, gerando-se modelos preditores usando diferentes tamanhos do nó final da AD para obter AD com tamanhos distintos. Quando não se controlou o tamanho das ad, o aumento da densidade de amostragem resultou no aumento da concordância com os mapas básicos de referências e no aumento do número de unidades de mapeamento preditas. nas ad com tamanho controlado, o aumento da densidade de amostragem não influenciou a concordância com os mapas de referência e interferiu muito pouco no número de unidades de mapeamento preditas. palavras-chave: mapa de solos, Sig, modelo, predição.Recebido para publicação em 16 de maio de 2014 e aprovado em 26 de fevereiro de 2015.
Resumo -O objetivo deste trabalho foi realizar a expansão de mapas pedológicos pela extrapolação de mapas preexistentes para áreas fisiograficamente semelhantes. Foram utilizados mapas de solos, em escala 1:50.000, das bacias hidrográficas dos rios Santo Cristo e Arroio Portão, no Rio Grande do Sul, e a extrapolação foi feita com uso do algoritmo de árvores de decisão "simple cart", treinado nas áreas previamente mapeadas. As bacias foram divididas em duas partes, uma para o treinamento e outra para a validação do modelo. A partir do modelo digital de elevação Aster-GDEM, foram gerados sete mapas de variáveis preditoras dos solos na paisagem. A amostragem de dados foi aleatória, com densidade de três pontos por hectare. O treinamento dos modelos foi realizado no programa Weka, e as acurácias foram calculadas a partir de matriz de erros. Para ambas as bacias, a acurácia geral do mapa de solos predito foi maior na área de treinamento do que na área de validação, a qual apresentou valores de 50 e 54%. Os mapas produzidos pelo modelo preditor apresentaram acentuada diferença na distribuição espacial das unidades de mapeamento, comparados com o mapa de solos original, indício de que a técnica de mapeamento digital utilizada é pouco eficiente para extrapolar mapas de solos preexistentes para outras áreas fisiograficamente semelhantes.Termos para indexação: acurácia geral, árvores de decisão, mineração de dados, pedometria, simple cart, sistema de informação geográfica. Expanding pedological maps to physiographically similar areas with digital soil mappingAbstract -The objective of this work was to expand pedological maps by extrapolating existing soil maps to physiographically similar areas. Soil maps were used at the scale of 1:50,000, for the watersheds of the rivers Santo Cristo and Arroio Portão, in the state of Rio Grande do Sul, Brazil, and the extrapolation was done using the "Simple Cart" decision tree algorithm, trained in the previously mapped areas. The watersheds were divided into two parts, one used for model training and the other for model validation. From the digital elevation model Aster-GDEM, seven maps of soil predicting variables in the landscape were generated. Sampling was random and performed with sampling density of three points per hectare. Model training was performed in the Weka software, and model accuracies were calculated using the error matrix. For both watersheds, the overall accuracy of the predicted soil map was higher in the training area than in the validation area, and showed values of 50 and 54%. The maps produced by the predictive model showed acute differences in the spatial distribution of mapping units, compared with the original soil map, indicating that the used digital mapping technique has low effectivity for the extrapolation of pre-existing soil maps to other physiographically similar areas.
Os modelos preditores usados no mapeamento digital de solos (MDS) precisam ser treinados com dados que captem ao máximo a variação dos atributos do terreno e dos solos, a fim de gerar correlações adequadas entre as variáveis ambientais e a ocorrência dos solos. Para avaliar a acurácia desses modelos, tem sido constatado o uso de diferentes métodos de avaliação da acurácia no MDS. Os objetivos deste estudo foram comparar o uso de três esquemas de amostragem para treinar algoritmo de árvore de classificação (CART) e avaliar a capacidade de predição dos modelos gerados por meio de quatro métodos. Foram utilizados os esquemas de amostragem: aleatório simples; proporcional à área de cada unidade de mapeamento de solos (UM); e estratificado pelo número de UM. Os métodos de avaliação testados foram: aparente, divisão percentual, validação cruzada com 10 subconjuntos e reamostragem com sete conjuntos de dados independentes. As acurácias dos modelos estimadas pelos métodos foram comparadas com as acurácias mensuradas obtidas pela comparação dos mapas gerados, a partir de cada esquema de amostragem, com o mapa convencional de solos na escala 1:50.000. Os esquemas de amostragem influenciaram na quantidade de UMs preditas e na acurácia dos modelos e dos mapas gerados. Os esquemas de amostragem proporcional e estratificada resultaram mapas digitais menos acurados, e a acurácia dos modelos variou conforme o método de avaliação empregado. A amostragem aleatória resultou no mapa digital mais acurado e apresentou valores da acurácia semelhantes para todos os métodos de avaliação testados.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.