Acute leukemia is a cancer-related to a bone marrow abnormality. It is more common in children and young adults. This type of leukemia generates unusual cell growth in a short period, requiring a quick start of treatment. Acute Lymphoid Leukemia (ALL) and Acute Myeloid Leukemia (AML) are the main responsible for deaths caused by this cancer. The classification of these two leukemia types on blood slide images is a vital process of and automatic system that can assist doctors in the selection of appropriate treatment. This work presents a convolutional neural networks (CNNs) architecture capable of differentiating blood slides with ALL, AML and Healthy Blood Slides (HBS). The experiments were performed using 16 datasets with 2,415 images, and the accuracy of 97.18% and a precision of 97.23% were achieved. The proposed model results were compared with the results obtained by the state of the art methods, including also based on CNNs.Index Terms-leukemia diagnosis, convolutional neural network, computer aided diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.