Plasmid persistence in bacterial populations is strongly influenced by the fitness effects associated with plasmid carriage. However, plasmid fitness effects in wild-type bacterial hosts remain largely unexplored. In this study, we determined the distribution of fitness effects (DFE) for the major antibiotic resistance plasmid pOXA-48 in wild-type, ecologically compatible enterobacterial isolates from the human gut microbiota. Our results show that although pOXA-48 produced an overall reduction in bacterial fitness, the DFE was dominated by quasi-neutral effects, and beneficial effects were observed in several isolates. Incorporating these data into a simple population dynamics model revealed a new set of conditions for plasmid stability in bacterial communities, with plasmid persistence increasing with bacterial diversity and becoming less dependent on conjugation. Moreover, genomic results showed a link between plasmid fitness effects and bacterial phylogeny, helping to explain pOXA-48 epidemiology. Our results provide a simple and general explanation for plasmid persistence in natural bacterial communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.