MicroRNAs are negative regulators of gene expression that play a key role in cell-type specific differentiation and modulation of cell function and have been proposed to be involved in neovascularization. Previously, using an extensive cloning and sequencing approach, we identified miR-126 to be specifically and highly expressed in human endothelial cells (EC). Here, we demonstrate EC-specific expression of miR-126 in capillaries and the larger vessels in vivo. We therefore explored the potential role of miR-126 in arteriogenesis and angiogenesis. Using miR-reporter constructs, we show that miR-126 is functionally active in EC in vitro and that it could be specifically repressed using antagomirs specifically targeting miR-126. To study the consequences of miR-126 silencing on vascular regeneration, mice were injected with a single dose of antagomir-126 or a control ‘scramblemir’ and exposed to ischemia of the left hindlimb by ligation of the femoral artery. Although miR-126 was effectively silenced in mice treated with a single, high dose (HD) of antagomir-126, laser Doppler perfusion imaging did not show effects on blood flow recovery. In contrast, quantification of the capillary density in the gastrocnemius muscle revealed that mice treated with a HD of antagomir-126 had a markedly reduced angiogenic response. Aortic explant cultures of the mice confirmed the role of miR-126 in angiogenesis. Our data demonstrate a facilitary function for miR-126 in ischemia-induced angiogenesis and show the efficacy and specificity of antagomir-induced silencing of EC-specific microRNAs in vivo.
R NA-binding proteins are central regulators of gene expression in both health and disease. 1,2 The RNA-binding protein Quaking (QKI) is a member of the highly conserved signal transduction and activator of RNA (STAR) family of RNA-binding proteins. 3 Alternative splicing of the mammalian qkI transcript yields 3 protein isoforms, notably QKI-5, QKI-6, and QKI-7, 2 with dimerization of QKI isoforms being required for the regulation of pre-mRNA splicing, mRNA export, and stability. 2,4 QKI drives central and peripheral nervous system myelination by regulating oligodendrocyte and Schwann cell differentiation, respectively. 2,4,5 However, a role for QKI outside the neural network is poorly understood. In This
Ischemia/reperfusion injury (IRI) is a central phenomenon in kidney transplantation and AKI. Integrity of the renal peritubular capillary network is an important limiting factor in the recovery from IRI. facilitates vascular regeneration by functioning as an angiomiR and by modulating mobilization of hematopoietic stem/progenitor cells. We hypothesized that overexpression of miR-126 in the hematopoietic compartment could protect the kidney against IRI via preservation of microvascular integrity. Here, we demonstrate that hematopoietic overexpression of miR-126 increases neovascularization of subcutaneously implanted Matrigel plugs in mice. After renal IRI, mice overexpressing miR-126 displayed a marked decrease in urea levels, weight loss, fibrotic markers, and injury markers (such as kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin). This protective effect was associated with a higher density of the peritubular capillary network in the corticomedullary junction and increased numbers of bone marrow-derived endothelial cells. Hematopoietic overexpression of miR-126 increased the number of circulating Lin 2 /Sca-1 + /cKit + hematopoietic stem and progenitor cells. Additionally, miR-126 overexpression attenuated expression of the chemokine receptor CXCR4 on Lin 2 /Sca-1 + /cKit + cells in the bone marrow and increased renal expression of its ligand stromal cell-derived factor 1, thus favoring mobilization of Lin 2 /Sca-1 + /cKit + cells toward the kidney. Taken together, these results suggest overexpression of miR-126 in the hematopoietic compartment is associated with stromal cell-derived factor 1/CXCR4-dependent vasculogenic progenitor cell mobilization and promotes vascular integrity and supports recovery of the kidney after IRI.
Chronic kidney disease is associated with progressive renal fibrosis, where perivascular cells give rise to the majority of α-smooth muscle actin (α-SMA) positive myofibroblasts. Here we sought to identify pericytic miRNAs that could serve as a target to decrease myofibroblast formation. Kidney fibrosis was induced in FoxD1-GC;Z/Red-mice by unilateral ureteral obstruction followed by FACS sorting of dsRed-positive FoxD1-derivative cells and miRNA profiling. MiR-132 selectively increased 21-fold during pericyte-to-myofibroblast formation, whereas miR-132 was only 2.5-fold up in total kidney lysates (both in obstructive and ischemia-reperfusion injury). MiR-132 silencing during obstruction decreased collagen deposition (35%) and tubular apoptosis. Immunohistochemistry, Western blot, and qRT-PCR confirmed a similar decrease in interstitial α-SMA(+) cells. Pathway analysis identified a rate-limiting role for miR-132 in myofibroblast proliferation that was confirmed in vitro. Indeed, antagomir-132-treated mice displayed a reduction in the number of proliferating Ki67(+) interstitial myofibroblasts. Interestingly, this was selective for the interstitial compartment and did not impair the reparative proliferation of tubular epithelial cells, as evidenced by an increase in Ki67(+) epithelial cells, as well as increased phospho-RB1, Cyclin-A and decreased RASA1, p21 levels in kidney lysates. Additional pathway and gene expression analyses suggest miR-132 coordinately regulates genes involved in TGF-β signaling (Smad2/Smad3), STAT3/ERK pathways, and cell proliferation (Foxo3/p300). Thus, silencing miR-132 counteracts the progression of renal fibrosis by selectively decreasing myofibroblast proliferation and could potentially serve as a novel antifibrotic therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.