SummaryWRKY transcription factors (TFs) are key regulators of many plant processes, including the responses to biotic and abiotic stresses, senescence, seed dormancy and seed germination. For over 15 years, limited evidence has been available suggesting that WRKY TFs may play roles in regulating plant responses to the phytohormone abscisic acid (ABA), notably some WRKY TFs are ABA-inducible repressors of seed germination. However, the roles of WRKY TFs in other aspects of ABA signalling, and the mechanisms involved, have remained unclear. Recent significant progress in ABA research has now placed specific WRKY TFs firmly in ABA-responsive signalling pathways, where they act at multiple levels. In Arabidopsis, WRKY TFs appear to act downstream of at least two ABA receptors: the cytoplasmic PYR ⁄ PYL ⁄ RCARprotein phosphatase 2C-ABA complex and the chloroplast envelope-located ABAR-ABA complex. In vivo and in vitro promoter-binding studies show that the target genes for WRKY TFs that are involved in ABA signalling include well-known ABA-responsive genes such as ABF2, ABF4, ABI4, ABI5, MYB2, DREB1a, DREB2a and RAB18. Additional well-characterized stressinducible genes such as RD29A and COR47 are also found in signalling pathways downstream of WRKY TFs. These new insights also reveal that some WRKY TFs are positive regulators of ABA-mediated stomatal closure and hence drought responses. Conversely, many WRKY TFs are negative regulators of seed germination, and controlling seed germination appears a common function of a subset of WRKY TFs in flowering plants. Taken together, these new data demonstrate that WRKY TFs are key nodes in ABA-responsive signalling networks.
BackgroundThe availability of increasing numbers of sequenced genomes has necessitated a re-evaluation of the evolution of the WRKY transcription factor family. Modern day plants descended from a charophyte green alga that colonized the land between 430 and 470 million years ago. The first charophyte genome sequence from Klebsormidium flaccidum filled a gap in the available genome sequences in the plant kingdom between unicellular green algae that typically have 1-3 WRKY genes and mosses that contain 30-40. WRKY genes have been previously found in non-plant species but their occurrence has been difficult to explain.ResultsOnly two WRKY genes are present in the Klebsormidium flaccidum genome and the presence of a Group IIb gene was unexpected because it had previously been thought that Group IIb WRKY genes first appeared in mosses. We found WRKY transcription factor genes outside of the plant lineage in some diplomonads, social amoebae, fungi incertae sedis, and amoebozoa. This patchy distribution suggests that lateral gene transfer is responsible. These lateral gene transfer events appear to pre-date the formation of the WRKY groups in flowering plants. Flowering plants contain proteins with domains typical for both resistance (R) proteins and WRKY transcription factors. R protein-WRKY genes have evolved numerous times in flowering plants, each type being restricted to specific flowering plant lineages. These chimeric proteins contain not only novel combinations of protein domains but also novel combinations and numbers of WRKY domains. Once formed, R protein WRKY genes may combine different components of signalling pathways that may either create new diversity in signalling or accelerate signalling by short circuiting signalling pathways.ConclusionsWe propose that the evolution of WRKY transcription factors includes early lateral gene transfers to non-plant organisms and the occurrence of algal WRKY genes that have no counterparts in flowering plants. We propose two alternative hypotheses of WRKY gene evolution: The “Group I Hypothesis” sees all WRKY genes evolving from Group I C-terminal WRKY domains. The alternative “IIa + b Separate Hypothesis” sees Groups IIa and IIb evolving directly from a single domain algal gene separate from the Group I-derived lineage.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-015-0456-y) contains supplementary material, which is available to authorized users.
proteins. what are often lacking are connections between metabolomics, wRKY transcription factors, promoters, biosynthetic pathways, fluxes and downstream responses. As more levels of the system are characterized, a more detailed understanding of the roles of wRKY transcription factors in drought responses in crops will be obtained.
BackgroundThe purpose of this project was to identify metabolites, proteins, genes, and promoters associated with water stress responses in soybean. A number of these may serve as new targets for the biotechnological improvement of drought responses in soybean (Glycine max).ResultsWe identified metabolites, proteins, and genes that are strongly up or down regulated during rapid water stress following removal from a hydroponics system. 163 metabolites showed significant changes during water stress in roots and 93 in leaves. The largest change was a root-specific 160-fold increase in the coumestan coumestrol making it a potential biomarker for drought and a promising target for improving drought responses. Previous reports suggest that coumestrol stimulates mycorrhizal colonization and under certain conditions mycorrhizal plants have improved drought tolerance. This suggests that coumestrol may be part of a call for help to the rhizobiome during stress. About 3,000 genes were strongly up-regulated by drought and we identified regulators such as ERF, MYB, NAC, bHLH, and WRKY transcription factors, receptor-like kinases, and calcium signaling components as potential targets for soybean improvement as well as the jasmonate and abscisic acid biosynthetic genes JMT, LOX1, and ABA1. Drought stressed soybean leaves show reduced mRNA levels of stomatal development genes including FAMA-like, MUTE-like and SPEECHLESS-like bHLH transcription factors and leaves formed after drought stress had a reduction in stomatal density of 22.34 % and stomatal index of 17.56 %. This suggests that reducing stomatal density may improve drought tolerance. MEME analyses suggest that ABRE (CACGT/CG), CRT/DRE (CCGAC) and a novel GTGCnTGC/G element play roles in transcriptional activation and these could form components of synthetic promoters to drive expression of transgenes. Using transformed hairy roots, we validated the increase in promoter activity of GmWRKY17 and GmWRKY67 during dehydration and after 20 μM ABA treatment.ConclusionsOur toolbox provides new targets and strategies for improving soybean drought tolerance and includes the coumestan coumestrol, transcription factors that regulate stomatal density, water stress-responsive WRKY gene promoters and a novel DNA element that appears to be enriched in water stress responsive promoters.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-2420-0) contains supplementary material, which is available to authorized users.
BackgroundThe Solanaceae are an economically important family of plants that include tobacco (Nicotiana tabacum L.), tomato, and potato. Drought is a major cause of crop losses.ResultsWe have identified major changes in physiology, metabolites, mRNA levels, and promoter activities during the tobacco response to drought. We have classified these as potential components of core responses that may be common to many plant species or responses that may be family/species-specific features of the drought stress response in tobacco or the Solanaceae. In tobacco the largest increase in any metabolite was a striking 70-fold increase in 4-hydroxy-2-oxoglutaric acid (KHG) in roots that appears to be tobacco/Solanaceae specific. KHG is poorly characterized in plants but is broken down to pyruvate and glyoxylate after the E. coli SOS response to facilitate the resumption of respiration. A similar process in tobacco would represent a mechanism to restart respiration upon water availability after drought. At the mRNA level, transcription factor gene induction by drought also showed both core and species/family specific responses. Many Group IX Subgroup 3 AP2/ERF transcription factors in tobacco appear to play roles in nicotine biosynthesis as a response to herbivory, whereas their counterparts in legume species appear to play roles in drought responses. We observed apparent Solanaceae-specific drought induction of several Group IId WRKY genes. One of these, NtWRKY69, showed ABA-independent drought stress-inducible promoter activity that moved into the leaf through the vascular tissue and then eventually into the surrounding leaf cells.ConclusionsWe propose components of a core metabolic response to drought stress in plants and also show that some major responses to drought stress at the metabolome and transcriptome levels are family specific. We therefore propose that the observed family-specific changes in metabolism are regulated, at least in part, by family-specific changes in transcription factor activity. We also present a list of potential targets for the improvement of Solanaceae drought responses.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1575-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.