Omega-3 polyunsaturated fatty acid (PUFA) supplementation has been proposed as (adjuvant) treatment for major depressive disorder (MDD). In the present meta-analysis, we pooled randomized placebo-controlled trials assessing the effects of omega-3 PUFA supplementation on depressive symptoms in MDD. Moreover, we performed meta-regression to test whether supplementation effects depended on eicosapentaenoic acid (EPA) or docosahexaenoic acid dose, their ratio, study duration, participants' age, percentage antidepressant users, baseline MDD symptom severity, publication year and study quality. To limit heterogeneity, we only included studies in adult patients with MDD assessed using standardized clinical interviews, and excluded studies that specifically studied perinatal/perimenopausal or comorbid MDD. Our PubMED/EMBASE search resulted in 1955 articles, from which we included 13 studies providing 1233 participants. After taking potential publication bias into account, meta-analysis showed an overall beneficial effect of omega-3 PUFAs on depressive symptoms in MDD (standardized mean difference=0.398 (0.114–0.682), P=0.006, random-effects model). As an explanation for significant heterogeneity (I2=73.36, P<0.001), meta-regression showed that higher EPA dose (β=0.00037 (0.00009–0.00065), P=0.009), higher percentage antidepressant users (β=0.0058 (0.00017–0.01144), P=0.044) and earlier publication year (β=−0.0735 (−0.143 to 0.004), P=0.04) were significantly associated with better outcome for PUFA supplementation. Additional sensitivity analyses were performed. In conclusion, present meta-analysis suggested a beneficial overall effect of omega-3 PUFA supplementation in MDD patients, especially for higher doses of EPA and in participants taking antidepressants. Future precision medicine trials should establish whether possible interactions between EPA and antidepressants could provide targets to improve antidepressant response and its prediction. Furthermore, potential long-term biochemical side effects of high-dosed add-on EPA supplementation should be carefully monitored.
Neurobiological models to explain vulnerability of major depressive disorder (MDD) are scarce and previous functional magnetic resonance imaging studies mostly examined “static” functional connectivity (FC). Knowing that FC constantly evolves over time, it becomes important to assess how FC dynamically differs in remitted‐MDD patients vulnerable for new depressive episodes. Using a recently developed method to examine dynamic FC, we characterized re‐emerging FC states during rest in 51 antidepressant‐free MDD patients at high risk of recurrence (≥2 previous episodes), and 35 healthy controls. We examined differences in occurrence, duration, and switching profiles of FC states after neutral and sad mood induction. Remitted MDD patients showed a decreased probability of an FC state (p < 0.005) consisting of an extensive network connecting frontal areas—important for cognitive control—with default mode network, striatum, and salience areas, involved in emotional and self‐referential processing. Even when this FC state was observed in patients, it lasted shorter (p < 0.005) and was less likely to switch to a smaller prefrontal–striatum network (p < 0.005). Differences between patients and controls decreased after sad mood induction. Further, the duration of this FC state increased in remitted patients after sad mood induction but not in controls (p < 0.05). Our findings suggest reduced ability of remitted‐MDD patients, in neutral mood, to access a clinically relevant control network involved in the interplay between externally and internally oriented attention. When recovering from sad mood, remitted recurrent MDD appears to employ a compensatory mechanism to access this FC state. This study provides a novel neurobiological profile of MDD vulnerability.
ObjectiveCardiovascular disease (CVD) is the leading cause of death in severe psychiatric disorders (depression, schizophrenia). Here, we provide evidence of how the effects of oxidative stress on fatty acid (FA) and one-carbon (1-C) cycle metabolism, which may initially represent adaptive responses, might underlie comorbidity between CVD and psychiatric disorders.MethodWe conducted a literature search and integrated data in a narrative review.ResultsOxidative stress, mainly generated in mitochondria, is implicated in both psychiatric and cardiovascular pathophysiology. Oxidative stress affects the intrinsically linked FA and 1-C cycle metabolism: FAs decrease in chain length and unsaturation (particularly omega-3 polyunsaturated FAs), and lipid peroxidation products increase; the 1-C cycle shifts from the methylation to transsulfuration pathway (lower folate and higher homocysteine and antioxidant glutathione). Interestingly, corresponding alterations were reported in psychiatric disorders and CVD. Potential mechanisms through which FA and 1-C cycle metabolism may be involved in brain (neurocognition, mood regulation) and cardiovascular system functioning (inflammation, thrombosis) include membrane peroxidizability and fluidity, eicosanoid synthesis, neuroprotection and epigenetics.ConclusionWhile oxidative-stress-induced alterations in FA and 1-C metabolism may initially enhance oxidative stress resistance, persisting chronically, they may cause damage possibly underlying (co-occurrence of) psychiatric disorders and CVD. This might have implications for research into diagnosis and (preventive) treatment of (CVD in) psychiatric patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.